Minnesota marijuana law takes dual approach to testing (2024)

Based on the Environmental Protection Agency's (EPA's) reconsideration of the air quality criteria and the national ambient air quality standards (NAAQS) for particulate matter (PM), the EPA is revising the primary annual PM2.5 standard by lowering the level from 12.0 µg/m3 to 9.0 µg/m3 . The Agency is retaining the current primary 24-hour PM2.5 standard and the primary 24-hour PM10 standard. The Agency also is not changing the secondary 24-hour PM2.5 standard, secondary annual PM2.5 standard, and secondary 24-hour PM10 standard at this time. The EPA is also finalizing revisions to other key aspects related to the PM NAAQS, including revisions to the Air Quality Index (AQI) and monitoring requirements for the PM NAAQS.

DATES: This final rule is effective May 6, 2024, published in theFederal Register March 6, 2024, page 16202.

Viewfinal rule.

§50.20 National primary ambient air quality standards for PM2.5.
Entire sectionAddedView text
Appendix K to Part 50 - Interpretation of the National Ambient Air Quality Standards for Particulate Matter
Section 1.0 paragraph (b)RevisedView text
Section 2.3 paragraph (d)AddedView text
Section 3.0 paragraphs (a) and (b)AddedView text
Appendix L to Part 50 - Reference Method for the Determination of Fine Particulate Matter as PM2.5 in the Atmosphere
Section 7.3.4RevisedView text
Section 7.3.4.5AddedView text
Appendix N to Part 50 - Interpretation of the National Ambient Air Quality Standards for PM2.5
Section 1.0 paragraph (a)RevisedView text
Section 3.0 paragraph (d)(3)AddedView text
Section 4.1 paragraph (a)RevisedView text
Section 4.2 paragraph (a)RevisedView text
§53.4 Applications for reference or equivalent method determinations.
(a), (d)RevisedView text
(b)(7)AddedView text
§53.8 Designation of reference and equivalent methods.
(a)RevisedView text
§53.14 Modification of a reference or equivalent method.
(c)(4)-(6)RevisedView text
Table A–1 to Subpart A of Part 53—Summary of Applicable Requirements for Reference and Equivalent Methods for Air Monitoring of Criteria Pollutants
Entire tableRevisedView text
Table B-1 to Subpart B of Part 53- Performance Limit Specifications for Automated Methods
Footnote 4RevisedView text
Table B-3 to Subpart B of Part 53 - Interferent Test Concentration,1 Parts per Million
Entire tableRevisedView text
Appendix A to Subpart B of Part 53 - Optional Forms for Reporting Test Results
Figures B-3 and B-5RevisedView text
§53.35 Test procedure for Class II and Class III methods for PM2.5 and PM10−2.5.
(b)(1)(ii)(D)RevisedView text
Table C-4 to Subpart C of Part 53—Test Specifications for PM10, PM2.5, and PM10–2.5 Candidate Equivalent Methods
Entire tableRevisedView text
§53.43 Test procedures.
Formulas in (a)(2)(xvi) and (c)(2)(iv)RevisedView text
§53.51 Demonstration of compliance with design specifications and manufacturing and test requirements.
(d)(2)RevisedView text
§53.61 Test conditions.
(g)RevisedView text
§58.1 Definitions.
Definition for ”Approved regional method (ARM)”RemovedView text
Definition for ”Traceable”RemovedView text
§58.10 Annual monitoring network plan and periodic network assessment.
(a)(1), (b)(10), (b)(13), (d)RevisedView text
(b)(14)AddedView text
§58.11 Network technical requirements.
(a)(2), (e)RevisedView text
§58.12 Operating schedules.
(d)(1)RevisedView text
§58.15 Annual air monitoring data certification.
Entire sectionRevisedView text
§58.20 Special purpose monitors (SPM).
(b)-(e)RevisedView text
Appendix A to Part 58 - Quality Assurance Requirements for Monitors used in Evaluations of National Ambient Air Quality Standards
Entire appendixRevisedView text
Appendix B to Part 58 - Quality Assurance Requirements for Prevention of Significant Deterioration (PSD) Air Monitoring
Entire appendixView text
Appendix C to Part 58—Ambient Air Quality Monitoring Methodology
Section 2RevisedView text
Appendix D to Part 58—Network Design Criteria for Ambient Air Quality Monitoring
Sections 1, 1.1(b), introductory text before table in 4.7.1(a), 4.7.1(b)(3), 4.7.2RevisedView text
Appendix E to Part 58—Probe and Monitoring Path Siting Criteria for Ambient Air Quality Monitoring
Entire appendixRevisedView text
Appendix G to Part 58—Uniform Air Quality Index (AQI) and Daily Reporting
Entire appendixRevisedView text

New Text

Appendix K to Part 50 - Interpretation of the National Ambient Air Quality Standards for Particulate Matter

* * * *

(b) The terms used in this appendix are defined as follows:

Average refers to the arithmetic mean of the estimated number of exceedances per year, as per section 3.1 of this appendix.

Collocated monitors refer to two or more air measurement instruments for the same parameter (e.g., PM10 mass) operated at the same site location, and whose placement is consistent with part 53 of this chapter. For purposes of considering a combined site record in this appendix, when two or more monitors are operated at the same site, one monitor is designated as the “primary” monitor with any additional monitors designated as “collocated.” It is implicit in these appendix procedures that the primary monitor and collocated monitor(s) are all reference or equivalent methods; however, it is not a requirement that the primary and collocated monitors utilize the same specific sampling and analysis method.

Combined site data record is the data set used for performing computations in this appendix and represents data for the primary monitors augmented with data from collocated monitors according to the procedure specified in section 3.0(a) of this appendix.

Daily value for PM10 refers to the 24-hour average concentration of PM10 calculated or measured from midnight to midnight (local time).

Exceedance means a daily value that is above the level of the 24-hour standard after rounding to the nearest 10 µg/m3i.e., values ending in 5 or greater are to be rounded up).

Expected annual value is the number approached when the annual values from an increasing number of years are averaged, in the absence of long-term trends in emissions or meteorological conditions.

Primary monitors are suitable monitors designated by a State or local agency in their annual network plan as the default data source for creating a combined site data record. If there is only one suitable monitor at a particular site location, then it is presumed to be a primary monitor.

Year refers to a calendar year.

Appendix L to Part 50 - Reference Method for the Determination of Fine Particulate Matter as PM2.5 in the Atmosphere

* * * *

7.3.4Particle size separator. The sampler shall be configured with one of the three alternative particle size separators described in this section. One separator is an impactor-type separator (WINS impactor) described in sections 7.3.4.1, 7.3.4.2, and 7.3.4.3 of this appendix. One alternative separator is a cyclone-type separator (VSCCTM) described in section 7.3.4.4 of this appendix. The other alternative separator is also a cyclone-type separator (TE–PM2.5 C) described in section 7.3.4.5 of this appendix.

Appendix N to Part 50 - Interpretation of the National Ambient Air Quality Standards for PM2.5

1.0 General

(a) This appendix explains the data handling conventions and computations necessary for determining when the national ambient air quality standards (NAAQS) for PM2.5 are met, specifically the primary and secondary annual and 24-hour PM2.5 NAAQS specified in §§50.7, 50.13, 50.18, and 50.20. PM2.5 is defined, in general terms, as particles with an aerodynamic diameter less than or equal to a nominal 2.5 micrometers. PM2.5 mass concentrations are measured in the ambient air by a Federal Reference Method (FRM) based on appendix L to this part, as applicable, and designated in accordance with part 53 of this chapter or by a Federal Equivalent Method (FEM) designated in accordance with part 53 of this chapter. Only those FRM and FEM measurements that are derived in accordance with part 58 of this chapter (i.e., that are deemed “suitable”) shall be used in comparisons with the PM2.5 NAAQS. The data handling and computation procedures to be used to construct annual and 24-hour NAAQS metrics from reported PM2.5 mass concentrations, and the associated instructions for comparing these calculated metrics to the levels of the PM2.5 NAAQS, are specified in sections 2.0, 3.0, and 4.0 of this appendix.

* * * *

4.1 Annual PM2. 5 NAAQS

(a) Levels of the primary and secondary annual PM2.5 NAAQS are specified in §§50.7, 50.13, 50.18, and 50.20 as applicable.

* * * * *

4.2 Twenty-Four-Hour PM2. 5 NAAQS

(a) Levels of the primary and secondary 24-hour PM2.5 NAAQS are specified in §§50.7, 50.13, 50.18, and 50.20 as applicable.

§53.4 Applications for reference or equivalent method determinations.

(a) Applications for FRM or FEM determinations and modification requests of existing designated instruments shall be submitted to: U.S. Environmental Protection Agency, Director, Center for Environmental Measurement and Modeling, Reference and Equivalent Methods Designation Program (MD–D205–03), 109 T.W. Alexander Drive, P.O. Box 12055, Research Triangle Park, North Carolina 27711 (commercial delivery address: 4930 Old Page Road, Durham, North Carolina 27703).

* * * *

(d) For candidate reference or equivalent methods or for designated instruments that are the subject of a modification request, the applicant, if requested by EPA, shall provide to EPA a representative sampler or analyzer for test purposes. The sampler or analyzer shall be shipped free on board (FOB) destination to Director, Center for Environmental Measurements and Modeling, Reference and Equivalent Methods Designation Program (MD D205–03), U.S. Environmental Protection Agency, 4930 Old Page Road, Durham, North Carolina 27703, scheduled to arrive concurrently with or within 30 days of the arrival of the other application materials. This sampler or analyzer may be subjected to various tests that EPA determines to be necessary or appropriate under §53.5(f), and such tests may include special tests not described in this part. If the instrument submitted under this paragraph (d) malfunctions, becomes inoperative, or fails to perform as represented in the application before the necessary EPA testing is completed, the applicant shall be afforded the opportunity to repair or replace the device at no cost to the EPA. Upon completion of EPA testing, the sampler or analyzer submitted under this paragraph (d) shall be repacked by EPA for return shipment to the applicant, using the same packing materials used for shipping the instrument to EPA unless alternative packing is provided by the applicant. Arrangements for, and the cost of, return shipment shall be the responsibility of the applicant. The EPA does not warrant or assume any liability for the condition of the sampler or analyzer upon return to the applicant.

§53.8 Designation of reference and equivalent methods.

(a) A candidate method determined by the Administrator to satisfy the applicable requirements of this part shall be designated as an FRM or FEM (as applicable) by and upon publication of the designation in theFederal Register . Applicants shall not publicly announce, market, or sell the candidate sampler and analyzer as an approved FRM or FEM (as applicable) until the designation is published in theFederal Register .

§53.14 Modification of a reference or equivalent method.

* * * *

(c)(4) Send notice to the applicant that additional information must be submitted before a determination can be made and specify the additional information that is needed (in such cases, the 90-day period shall commence upon receipt of the additional information).

(c)(5) Send notice to the applicant that additional tests are necessary and specify which tests are necessary and how they shall be interpreted (in such cases, the 90-day period shall commence upon receipt of the additional test data).

(c)(6) Send notice to the applicant that additional tests will be conducted by the Administrator and specify the reasons for and the nature of the additional tests (in such cases, the 90-day period shall commence 1 calendar day after the additional tests are completed).

Table A–1 to Subpart A of Part 53—Summary of Applicable Requirements for Reference and Equivalent Methods for Air Monitoring of Criteria Pollutants

Table A–1 to Subpart A of Part 53—Summary of Applicable Requirements for Reference and Equivalent Methods for Air Monitoring of Criteria Pollutants
1 Some requirements may apply, based on the nature of each particular candidate method, as determined by the Administrator.
2 Alternative Class III requirements may be substituted.
PollutantReference or equivalentManual or automatedApplicable appendix of part 50 of this chapterApplicable subparts of this part
ABCDEF
SO2ReferenceManualA–2
AutomatedA–1
EquivalentManualA–1
AutomatedA–1
COReferenceAutomatedC
EquivalentManualC
AutomatedC
O3ReferenceAutomatedD
EquivalentManualD
AutomatedD
NO2ReferenceAutomatedF
EquivalentManualF
AutomatedF
PbReferenceManualG
EquivalentManualG
AutomatedG
PM10 -PbReferenceManualQ
EquivalentManualQ
AutomatedQ
PM10ReferenceManualJ
EquivalentManualJ
AutomatedJ
PM2.5ReferenceManualL
Equivalent Class IManualL
Equivalent Class IIManualL12
Equivalent Class IIIAutomatedL11
PM10–2.5ReferenceManualL,2 O
Equivalent Class IManualL,2 O
Equivalent Class IIManualL,2 O21,2
Equivalent Class IIIAutomated1 L, O1

Table B-1 to Subpart B of Part 53- Performance Limit Specifications for Automated Methods

* * * *

4 For nitric oxide interference for the SO2 ultraviolet fluorescence (UVF) method, interference equivalent is ±0.003 ppm for the lower range.

Table B-3 to Subpart B of Part 53 - Interferent Test Concentration,1 Parts per Million

Table B–3 to Subpart B of Part 53—Interferent Test Concentration[Parts per million]
PollutantAnalyzer type2Hydro-chloric acidAmmoniaHydrogen sulfideSulfur dioxideNitrogen dioxideNitric oxideCarbon dioxideEthyleneOzoneM-xyleneWater vaporCarbon monoxideMethaneEthaneNaphthalene
1 Concentrations of interferent listed must be prepared and controlled to ±10 percent of the stated value.
2 Analyzer types not listed will be considered by the Administrator as special cases.
3 Do not mix interferent with the pollutant.
4 Concentration of pollutant used for test. These pollutant concentrations must be prepared to ±10 percent of the stated value.
5 If candidate method utilizes an elevated-temperature scrubber for removal of aromatic hydrocarbons, perform this interference test.
6 If naphthalene test concentration cannot be accurately quantified, remove the scrubber, use a test concentration that causes a full-scale response, reattach the scrubber, and evaluate response for interference.
SO2Ultraviolet fluorescence5 0.14 0.140.50.50.50.220,0006 0.05
SO2Flame photometric0.014 0.147503 20,00050
SO2Gas chromatography0.14 0.147503 20,00050
SO2Spectrophotometric-wet chemical (pararosanaline)0.20.10.14 0.140.57500.5
SO2Electrochemical0.20.10.14 0.140.50.50.20.53 20,000
SO2Conductivity0.20.14 0.140.5750
SO2Spectrophotometric-gas phase, including DOAS4 0.140.50.50.50.2
O3Ethylene Chemiluminescence3 0.17504 0.083 20,000
O3NO-chemiluminescence3 0.10.57504 0.083 20,000
O3Electrochemical3 0.10.50.54 0.083 20,000
O3Spectrophotometric-wet chemical (potassium iodide)3 0.10.50.53 0.54 0.08
O3Spectrophotometric-gas phase, including ultraviolet absorption and DOAS0.50.53 0.54 0.080.0220,000
CONon-dispersive Infrared75020,0004 10
COGas chromatography with flame ionization detector20,0004 100.5
COElectrochemical0.50.220,0004 10
COCatalytic combustion-thermal detection0.17500.220,0004 105.00.5
COIR fluorescence75020,0004 100.5
COMercury replacement-UV photometric0.24 100.5
NO2Chemiluminescent3 0.10.54 0.10.520,000
NO2Spectrophotometric-wet chemical (azo-dye reaction)0.54 0.10.57500.5
NO2Electrochemical0.23 0.10.54 0.10.57500.520,00050
NO2Spectrophotometric-gas phase3 0.10.54 0.10.50.520,00050

Appendix A to Subpart B of Part 53 - Optional Forms for Reporting Test Results

* * * * *

Figure B–3 to Appendix A to Subpart B of Part 53—Form for Test Data and Calculations for Lower Detectable Limit (LDL) and Interference Equivalent (IE) (see §53.23(c) and (d))

LDL Interference Test Data

Applicant _________________

Analyzer _________________

Date _________________

Pollutant _________________


Minnesota marijuana law takes dual approach to testing (1)

* * * * *

Figure B–5 to Appendix A to Subpart B of Part 53—Form for Calculating Zero Drift, Span Drift and Precision (see §53.23(e))

Calculation of Zero Drift, Span Drift, and Precision

Applicant _________________

Analyzer _________________

Date _________________

Pollutant _________________


Minnesota marijuana law takes dual approach to testing (2)

§53.35 Test procedure for Class II and Class III methods for PM2.5 and PM10−2.5.

* * * *

(b)(1)(ii)(D) Site D shall be in a large city east of the Mississippi River, having characteristically high humidity levels.

Table C-4 to Subpart C of Part 53—Test Specifications for PM10, PM2.5, and PM10–2.5 Candidate Equivalent Methodss

Table C–4 to Subpart C of Part 53—Test Specifications for PM10 , PM2.5 , and PM10–2.5 Candidate Equivalent Methods
SpecificationPM10PM2.5PM10–2.5
Class IClass IIClass IIIClass IIClass III
1 Some missing daily measurement values may be permitted; see test procedure.
2 Calculated as the root mean square over all measurement sets.
Acceptable concentration range (Rj), µg/m35–3003–2003–2003–2003–2003–200.
Minimum number of test sites212424.
Minimum number of candidate method samplers or analyzers per site333131313.1
Number of reference method samplers per site333131313.1
Minimum number of acceptable sample sets per site for PM10 methods:
Rj < 20 µg/m33
Rj > 20 µg/m33
Total10
Minimum number of acceptable sample sets per site for PM2.5 and PM10–2.5 candidate equivalent methods:
Rj < 15 µg/m3 for 24-hr or Rj < 8 µg/m3 for 48-hr samples.33333.
Rj > 15 µg/m3 for 24-hr or Rj > 8 µg/m3 for 48-hr samples33333.
Each season1023232323.
Total, each site102323 (46 for two-season sites)2323 (46 for two-season sites).
Precision of replicate reference method measurements, PRj or RPRj , respectively; RP for Class II or III PM2.5 or PM10–2.5 , maximum5 μg/m3 or 7%.2 μg/m3 or 5%.10%210%210%210%.2
Precision of PM2.5 or PM10–2.5 candidate method, CP, each site10%215%215%215%.2
Slope of regression relationship1 ±0.101 ±0.051 ±0.101 ±0.101 ±0.101 ±0.12.
Intercept of regression relationship, µg/m30 ±50 ±1Between: 13.55—(15.05 × slope), but not less than—1.5; and 16.56—(15.05 × slope), but not more than +1.5Between: 15.05—(17.32 × slope), but not less than—2.0; and 15.05—(13.20 × slope), but not more than +2.0Between: 62.05—(70.5 × slope), but not less than—3.5; and 78.95—(70.5 × slope), but not more than +3.5Between: 70.50—(82.93 × slope), but not less than—7.0; and 70.50—(61.16 × slope), but not more than +7.0.
Correlation of reference method and candidate method measurements≥ 0.97≥ 0.97≥ 0.93—for CCV ≤ 0.4; ≥ 0.85 + 0.2 × CCV—for 0.4 ≤ CCV ≤ 0.5; ≥ 0.95—for CCV ≥ 0.5

§53.43 Test procedures.

(a)(2)(xvi)


Minnesota marijuana law takes dual approach to testing (3)

(c)(2)(iv) * * *


Minnesota marijuana law takes dual approach to testing (4)

if Cj is below 80 µg/m3 , or


Minnesota marijuana law takes dual approach to testing (5)

if Cj is above 80 µg/m3 .

§53.51 Demonstration of compliance with design specifications and manufacturing and test requirements.

* * * *

(d)(2)VSCC and TE–PM2.5C separators. For samplers and monitors utilizing the BGI VSCC or Tisch TE–PM2.5 C particle size separators specified in sections 7.3.4.4 and 7.3.4.5 of appendix L to part 50 of this chapter, respectively, the respective manufacturers shall identify the critical dimensions and manufacturing tolerances for the separator, devise appropriate test procedures to verify that the critical dimensions and tolerances are maintained during the manufacturing process, and carry out those procedures on each separator manufactured to verify conformance of the manufactured products. The manufacturer shall also maintain records of these tests and their test results and submit evidence that this procedure is incorporated into the manufacturing procedure, that the test is or will be routinely implemented, and that an appropriate procedure is in place for the disposition of units that fail this tolerance tests.

§53.61 Test conditions.

(g)Vibrating Orifice Aerosol Generator (VOAG) and Flow-Focusing Monodisperse Aerosol Generator (FMAG) conventions. This section prescribes conventions regarding the use of the vibrating orifice aerosol generator (VOAG) and the flow-focusing monodisperse aerosol generator (FMAG) for the size-selective performance tests outlined in §§53.62, 53.63, 53.64, and 53.65.

(1)Particle aerodynamic diameter. The VOAG and FMAG produce near-monodisperse droplets through the controlled breakup of a liquid jet. When the liquid solution consists of a non-volatile solute dissolved in a volatile solvent, the droplets dry to form particles of near-monodisperse size.

(i) The physical diameter of a generated spherical particle can be calculated from the operational parameters of the VOAG and FMAG as:

Equation 1


Minnesota marijuana law takes dual approach to testing (6)

where:

Dp = particle physical diameter, µm;

Q = liquid volumetric flow rate, µm3/sec;

Cvol = volume concentration (particle volume produced per drop volume), dimensionless; and

f = frequency of applied vibrational signal, 1/sec.

(ii) A given particle's aerodynamic behavior is a function of its physical particle size, particle shape, and density. Aerodynamic diameter is defined as the diameter of a unit density (ρo = 1g/cm3) sphere having the same settling velocity as the particle under consideration. For converting a spherical particle of known density to aerodynamic diameter, the governing relationship is:

Equation 2


Minnesota marijuana law takes dual approach to testing (7)

where:

Dae = particle aerodynamic diameter, µm;

ρp = particle density, g/cm3;

ρo = aerodynamic particle density = 1 g/cm3;

CDp = Cunningham's slip correction factor for physical particle diameter, dimensionless; and

CDae = Cunningham's slip correction factor for aerodynamic particle diameter, dimensionless.

(iii) At room temperature and standard pressure, the Cunningham's slip correction factor is solely a function of particle diameter:

Equation 3


Minnesota marijuana law takes dual approach to testing (8)

or

Equation 4


Minnesota marijuana law takes dual approach to testing (9)

(iv) Since the slip correction factor is itself a function of particle diameter, the aerodynamic diameter in equation 2 of paragraph (g)(1)(ii) of this section cannot be solved directly but must be determined by iteration.

(2)Solid particle generation. (i) Solid particle tests performed in this subpart shall be conducted using particles composed of ammonium fluorescein. For use in the VOAG or FMAG, liquid solutions of known volumetric concentration can be prepared by diluting fluorescein powder (C2 OH12 O5 , FW = 332.31, CAS 2321–07–5) with aqueous ammonia. Guidelines for preparation of fluorescein solutions of the desired volume concentration (Cvol) are presented in Vanderpool and Rubow (1988) (Reference 2 in appendix A to this subpart). For purposes of converting particle physical diameter to aerodynamic diameter, an ammonium fluorescein particle density of 1.35 g/cm3 shall be used.

(ii) Mass deposits of ammonium fluorescein shall be extracted and analyzed using solutions of 0.01 N ammonium hydroxide.

(iii) Calculation of the physical diameter of the particles produced by the VOAG and FMAG requires knowledge of the liquid solution's volume concentration (Cvol). Because uranine is essentially insoluble in oleic acid, the total particle volume is the sum of the oleic acid volume and the uranine volume. The volume concentration of the liquid solution shall be calculated as:


Minnesota marijuana law takes dual approach to testing (10)

Where:

Vu = uranine volume, ml;

Voleic = oleic acid volume, ml;

Vsol = total solution volume, ml;

Mu = uranine mass, g;

Pu = uranine density, g/cm3 ;

Moleic = oleic acid mass, g; and

Poleic = oleic acid density, g/cm3 .

(3)Liquid particle generation. (i) Tests prescribed in§53.63 for inlet aspiration require the use of liquid particle tests composed of oleic acid tagged with uranine to enable subsequent fluorometric quantitation of collected aerosol mass deposits. Oleic acid (C18H34O2, FW = 282.47, CAS 112-80-1) has a density of 0.8935 g/cm3. Because the viscosity of oleic acid is relatively high, significant errors can occur when dispensing oleic acid using volumetric pipettes. For this reason, it is recommended that oleic acid solutions be prepared by quantifying dispensed oleic acid gravimetrically. The volume of oleic acid dispensed can then be calculated simply by dividing the dispensed mass by the oleic acid density.

(ii) Oleic acid solutions tagged with uranine shall be prepared as follows. A known mass of oleic acid shall first be diluted using absolute ethanol. The desired mass of the uranine tag should then be diluted in a separate container using absolute ethanol. Uranine (C20H10O5Na2, FW = 376.3, CAS 518-47-8) is the disodium salt of fluorescein and has a density of 1.53 g/cm3. In preparing uranine tagged oleic acid particles, the uranine content shall not exceed 20 percent on a mass basis. Once both oleic acid and uranine solutions are properly prepared, they can then be combined and diluted to final volume using absolute ethanol.

(iii) Calculation of the physical diameter of the particles produced by the VOAG requires knowledge of the liquid solution's volume concentration (Cvol). Because uranine is essentially insoluble in oleic acid, the total particle volume is the sum of the oleic acid volume and the uranine volume. The volume concentration of the liquid solution shall be calculated as:

Equation 5


Minnesota marijuana law takes dual approach to testing (11)

where:

Vu = uranine volume, ml;

Voleic = oleic acid volume, ml;

Vsol = total solution volume, ml;

Mu = uranine mass, g;

ρu = uranine density, g/cm3;

Moleic = oleic acid mass, g; and

ρoleic = oleic acid density, g/cm.3

(iv) For purposes of converting the particles' physical diameter to aerodynamic diameter, the density of the generated particles shall be calculated as:

Equation 6


Minnesota marijuana law takes dual approach to testing (12)

(v) Mass deposits of oleic acid shall be extracted and analyzed using solutions of 0.01 N sodium hydroxide.

§58.1 Definitions.

* * * *

Traceable means a measurement result from a local standard whereby the result can be related to the International System of Units (SI) through a documented unbroken chain of calibrations, each contributing to the measurement uncertainty. Traceable measurement results must be compared and certified, either directly or via not more than one intermediate standard, to a National Institute of Standards and Technology (NIST)-certified reference standard. Examples include but are not limited to NIST Standard Reference Material (SRM), NIST-traceable Reference Material (NTRM), or a NIST-certified Research Gas Mixture (RGM). Traceability to the SI through other National Metrology Institutes (NMIs) in addition to NIST is allowed if a Declaration of Equivalence (DoE) exists between NIST and that NMI.

§58.10 Annual monitoring network plan and periodic network assessment.

* * * *

(a)(1) Beginning July 1, 2007, the State, or where applicable local, agency shall submit to the Regional Administrator an annual monitoring network plan which shall provide for the documentation of the establishment and maintenance of an air quality surveillance system that consists of a network of SLAMS monitoring stations that can include FRM and FEM monitors that are part of SLAMS, NCore, CSN, PAMS, and SPM stations. The plan shall include a statement of whether the operation of each monitor meets the requirements of appendices A, B, C, D, and E to this part, where applicable. The Regional Administrator may require additional information in support of this statement. The annual monitoring network plan must be made available for public inspection and comment for at least 30 days prior to submission to the EPA and the submitted plan shall include and address, as appropriate, any received comments.

* * * * *

(b)(10) Any monitors for which a waiver has been requested or granted by the EPA Regional Administrator as allowed for under appendix D or appendix E to this part. For those monitors where a waiver has been approved, the annual monitoring network plan shall include the date the waiver was approved.

* * * * *

(b)(13) The identification of any PM2.5 FEMs used in the monitoring agency's network where the data are not of sufficient quality such that data are not to be compared to the national ambient air quality standards (NAAQS). For required SLAMS where the agency identifies that the PM2.5 Class III FEM does not produce data of sufficient quality for comparison to the NAAQS, the monitoring agency must ensure that an operating FRM or filter-based FEM meeting the sample frequency requirements described in §58.12 or other Class III PM2.5 FEM with data of sufficient quality is operating and reporting data to meet the network design criteria described in appendix D to this part.

* * * * *

(d) The State, or where applicable local, agency shall perform and submit to the EPA Regional Administrator an assessment of the air quality surveillance system every 5 years to determine, at a minimum, if the network meets the monitoring objectives defined in appendix D to this part, whether new sites are needed, whether existing sites are no longer needed and can be terminated, and whether new technologies are appropriate for incorporation into the ambient air monitoring network. The network assessment must consider the ability of existing and proposed sites to support air quality characterization for areas with relatively high populations of susceptible individuals (e.g., children with asthma) and other at-risk populations, and, for any sites that are being proposed for discontinuance, the effect on data users other than the agency itself, such as nearby States and Tribes or health effects studies. The State, or where applicable local, agency must submit a copy of this 5-year assessment, along with a revised annual network plan, to the Regional Administrator. The assessments are due every 5 years beginning July 1, 2010.

§58.11 Network technical requirements.

* * * *

(a)(2) Beginning January 1, 2009, State and local governments shall follow the quality assurance criteria contained in appendix A to this part that apply to SPM sites when operating any SPM site which uses an FRM or an FEM and meets the requirements of appendix E to this part, unless the Regional Administrator approves an alternative to the requirements of appendix A with respect to such SPM sites because meeting those requirements would be physically and/or financially impractical due to physical conditions at the monitoring site and the requirements are not essential to achieving the intended data objectives of the SPM site. Alternatives to the requirements of appendix A may be approved for an SPM site as part of the approval of the annual monitoring plan, or separately.

* * * *

(e) State and local governments must assess data from Class III PM2.5 FEM monitors operated within their network using the performance criteria described in table C–4 to subpart C of part 53 of this chapter, for cases where the data are identified as not of sufficient comparability to a collocated FRM, and the monitoring agency requests that the FEM data should not be used in comparison to the NAAQS. These assessments are required in the monitoring agency's annual monitoring network plan described in §58.10(b) for cases where the FEM is identified as not of sufficient comparability to a collocated FRM. For these collocated PM2.5 monitors, the performance criteria apply with the following additional provisions:

(1) The acceptable concentration range (Rj), µg/m3 may include values down to 0 µg/m3 .

(2) The minimum number of test sites shall be at least one; however, the number of test sites will generally include all locations within an agency's network with collocated FRMs and FEMs.

(3) The minimum number of methods shall include at least one FRM and at least one FEM.

(4) Since multiple FRMs and FEMs may not be present at each site, the precision statistic requirement does not apply, even if precision data are available.

(5) All seasons must be covered with no more than 36 consecutive months of data in total aggregated together.

(6) The key statistical metric to include in an assessment is the bias (both additive and multiplicative) of the PM2.5 continuous FEM(s) compared to a collocated FRM(s). Correlation is required to be reported in the assessment, but failure to meet the correlation criteria, by itself, is not cause to exclude data from a continuous FEM monitor.

§58.12 Operating schedules.

* * * *

(1)(i) Manual PM2.5 samplers at required SLAMS stations without a collocated continuously operating PM2.5 monitor must operate on at least a 1-in-3 day schedule unless a waiver for an alternative schedule has been approved per paragraph (d)(1)(ii) of this section.

(ii) For SLAMS PM2.5 sites with both manual and continuous PM2.5 monitors operating, the monitoring agency may request approval for a reduction to 1-in-6 day PM2.5 sampling or for seasonal sampling from the EPA Regional Administrator. Other requests for a reduction to 1-in-6 day PM2.5 sampling or for seasonal sampling may be approved on a case-by-case basis. The EPA Regional Administrator may grant sampling frequency reductions after consideration of factors (including but not limited to the historical PM2.5 data quality assessments, the location of current PM2.5 design value sites, and their regulatory data needs) if the Regional Administrator determines that the reduction in sampling frequency will not compromise data needed for implementation of the NAAQS. Required SLAMS stations whose measurements determine the design value for their area and that are within plus or minus 10 percent of the annual NAAQS, and all required sites where one or more 24-hour values have exceeded the 24-hour NAAQS each year for a consecutive period of at least 3 years are required to maintain at least a 1-in-3 day sampling frequency until the design value no longer meets the criteria in this paragraph (d)(1)(ii) for 3 consecutive years. A continuously operating FEM PM2.5 monitor satisfies the requirement in this paragraph (d)(1)(ii) unless it is identified in the monitoring agency's annual monitoring network plan as not appropriate for comparison to the NAAQS and the EPA Regional Administrator has approved that the data from that monitor may be excluded from comparison to the NAAQS.

(iii) Required SLAMS stations whose measurements determine the 24-hour design value for their area and whose data are within plus or minus 5 percent of the level of the 24-hour PM2.5 NAAQS must have an FRM or FEM operate on a daily schedule if that area's design value for the annual NAAQS is less than the level of the annual PM2.5 standard. A continuously operating FEM or PM2.5 monitor satisfies the requirement in this paragraph (d)(1)(iii) unless it is identified in the monitoring agency's annual monitoring network plan as not appropriate for comparison to the NAAQS and the EPA Regional Administrator has approved that the data from that monitor may be excluded from comparison to the NAAQS. The daily schedule must be maintained until the referenced design values no longer meets the criteria in this paragraph (d)(1)(iii) for 3 consecutive years.

(iv) Changes in sampling frequency attributable to changes in design values shall be implemented no later than January 1 of the calendar year following the certification of such data as described in §58.15.

§58.15 Annual air monitoring data certification.

(a) The State, or where appropriate local, agency shall submit to the EPA Regional Administrator an annual air monitoring data certification letter to certify data collected by FRM and FEM monitors at SLAMS and SPM sites that meet criteria in appendix A to this part from January 1 to December 31 of the previous year. The head official in each monitoring agency, or his or her designee, shall certify that the previous year of ambient concentration and quality assurance data are completely submitted to AQS and that the ambient concentration data are accurate to the best of her or his knowledge, taking into consideration the quality assurance findings. The annual data certification letter is due by May 1 of each year.

(b) Along with each certification letter, the State shall submit to the Regional Administrator an annual summary report of all the ambient air quality data collected by FRM and FEM monitors at SLAMS and SPM sites. The annual report(s) shall be submitted for data collected from January 1 to December 31 of the previous year. The annual summary serves as the record of the specific data that is the object of the certification letter.

(c) Along with each certification letter, the State shall submit to the Regional Administrator a summary of the precision and accuracy data for all ambient air quality data collected by FRM and FEM monitors at SLAMS and SPM sites. The summary of precision and accuracy shall be submitted for data collected from January 1 to December 31 of the previous year.

§58.20 Special purpose monitors (SPM).

* * * *

(b) Any SPM data collected by an air monitoring agency using a Federal reference method (FRM) or Federal equivalent method (FEM) must meet the requirements of §§58.11 and 58.12 and appendix A to this part or an approved alternative to appendix A. Compliance with appendix E to this part is optional but encouraged except when the monitoring agency's data objectives are inconsistent with the requirements in appendix E. Data collected at an SPM using a FRM or FEM meeting the requirements of appendix A must be submitted to AQS according to the requirements of §58.16. Data collected by other SPMs may be submitted. The monitoring agency must also submit to AQS an indication of whether each SPM reporting data to AQS monitor meets the requirements of appendices A and E.

(c) All data from an SPM using an FRM or FEM which has operated for more than 24 months are eligible for comparison to the relevant NAAQS, subject to the conditions of §§58.11(e) and 58.30, unless the air monitoring agency demonstrates that the data came from a particular period during which the requirements of appendix A, appendix C, or appendix E to this part were not met, subject to review and EPA Regional Office approval as part of the annual monitoring network plan described in §58.10.

(d) If an SPM using an FRM or FEM is discontinued within 24 months of start-up, the Administrator will not base a NAAQS violation determination for the PM2.5 or ozone NAAQS solely on data from the SPM.

(e) If an SPM using an FRM or FEM is discontinued within 24 months of start-up, the Administrator will not designate an area as nonattainment for the CO, SO2 , NO2 , or 24-hour PM10 NAAQS solely on the basis of data from the SPM. Such data are eligible for use in determinations of whether a nonattainment area has attained one of these NAAQS.

Appendix A to Part 58 - Quality Assurance Requirements for Monitors used in Evaluations of National Ambient Air Quality Standards

1. General Information

2. Quality System Requirements

3. Measurement Quality Check Requirements

4. Calculations for Data Quality Assessments

5. Reporting Requirements

6. References

1. General Information

1.1Applicability. (a) This appendix specifies the minimum quality system requirements applicable to SLAMS and other monitor types whose data are intended to be used to determine compliance with the NAAQS (e.g., SPMs, tribal, CASTNET, NCore, industrial, etc.), unless the EPA Regional Administrator has reviewed and approved the monitor for exclusion from NAAQS use and these quality assurance requirements.

(b) Primary quality assurance organizations are encouraged to develop and maintain quality systems more extensive than the required minimums. Additional guidance for the requirements reflected in this appendix can be found in the “Quality Assurance Handbook for Air Pollution Measurement Systems,” Volume II (see reference 10 of this appendix) and at a national level in references 1, 2, and 3 of this appendix.

1.2Primary Quality Assurance Organization (PQAO). A PQAO is defined as a monitoring organization or a group of monitoring organizations or other organization that is responsible for a set of stations that monitors the same pollutant and for which data quality assessments will be pooled. Each criteria pollutant sampler/monitor must be associated with only one PQAO. In some cases, data quality is assessed at the PQAO level.

1.2.1 Each PQAO shall be defined such that measurement uncertainty among all stations in the organization can be expected to be reasonably hom*ogeneous as a result of common factors. Common factors that should be considered in defining PQAOs include:

(a) Operation by a common team of field operators according to a common set of procedures;

(b) Use of a common quality assurance project plan (QAPP) or standard operating procedures;

(c) Common calibration facilities and standards;

(d) Oversight by a common quality assurance organization; and

(e) Support by a common management organization (i.e., state agency) or laboratory.

Since data quality assessments are made and data certified at the PQAO level, the monitoring organization identified as the PQAO will be responsible for the oversight of the quality of data of all monitoring organizations within the PQAO.

1.2.2 Monitoring organizations having difficulty describing its PQAO or in assigning specific monitors to primary quality assurance organizations should consult with the appropriate EPA Regional Office. Any consolidation of monitoring organizations to PQAOs shall be subject to final approval by the appropriate EPA Regional Office.

1.2.3 Each PQAO is required to implement a quality system that provides sufficient information to assess the quality of the monitoring data. The quality system must, at a minimum, include the specific requirements described in this appendix. Failure to conduct or pass a required check or procedure, or a series of required checks or procedures, does not by itself invalidate data for regulatory decision making. Rather, PQAOs and the EPA shall use the checks and procedures required in this appendix in combination with other data quality information, reports, and similar documentation that demonstrate overall compliance with Part 58. Accordingly, the EPA and PQAOs shall use a “weight of evidence” approach when determining the suitability of data for regulatory decisions. The EPA reserves the authority to use or not use monitoring data submitted by a monitoring organization when making regulatory decisions based on the EPA's assessment of the quality of the data. Consensus built validation templates or validation criteria already approved in QAPPs should be used as the basis for the weight of evidence approach.

1.3Definitions.

(a)Measurement Uncertainty. A term used to describe deviations from a true concentration or estimate that are related to the measurement process and not to spatial or temporal population attributes of the air being measured.

(b)Precision. A measurement of mutual agreement among individual measurements of the same property usually under prescribed similar conditions, expressed generally in terms of the standard deviation.

(c)Bias. The systematic or persistent distortion of a measurement process which causes errors in one direction.

(d)Accuracy. The degree of agreement between an observed value and an accepted reference value. Accuracy includes a combination of random error (imprecision) and systematic error (bias) components which are due to sampling and analytical operations.

(e)Completeness. A measure of the amount of valid data obtained from a measurement system compared to the amount that was expected to be obtained under correct, normal conditions.

(f)Detection Limit. The lowest concentration or amount of target analyte that can be determined to be different from zero by a single measurement at a stated level of probability.

1.4Measurement Quality Checks. The measurement quality checks described in section 3 of this appendix shall be reported to AQS and are included in the data required for certification.

1.5Assessments and Reports. Periodic assessments and documentation of data quality are required to be reported to the EPA. To provide national uniformity in this assessment and reporting of data quality for all networks, specific assessment and reporting procedures are prescribed in detail in sections 3, 4, and 5 of this appendix. On the other hand, the selection and extent of the quality assurance and quality control activities used by a monitoring organization depend on a number of local factors such as field and laboratory conditions, the objectives for monitoring, the level of data quality needed, the expertise of assigned personnel, the cost of control procedures, pollutant concentration levels, etc. Therefore, quality system requirements in section 2 of this appendix are specified in general terms to allow each monitoring organization to develop a quality system that is most efficient and effective for its own circ*mstances while achieving the data quality objectives described in this appendix.

2. Quality System Requirements

A quality system (reference 1 of this appendix) is the means by which an organization manages the quality of the monitoring information it produces in a systematic, organized manner. It provides a framework for planning, implementing, assessing and reporting work performed by an organization and for carrying out required quality assurance and quality control activities.

2.1Quality Management Plans and Quality Assurance Project Plans. All PQAOs must develop a quality system that is described and approved in quality management plans (QMP) and QAPPs to ensure that the monitoring results:

(a) Meet a well-defined need, use, or purpose (reference 5 of this appendix);

(b) Provide data of adequate quality for the intended monitoring objectives;

(c) Satisfy stakeholder expectations;

(d) Comply with applicable standards specifications;

(e) Comply with statutory (and other legal) requirements; and

(f) Reflect consideration of cost and economics.

2.1.1 The QMP describes the quality system in terms of the organizational structure, functional responsibilities of management and staff, lines of authority, and required interfaces for those planning, implementing, assessing and reporting activities involving environmental data operations (EDO). The QMP must be suitably documented in accordance with EPA requirements (reference 2 of this appendix), and approved by the appropriate Regional Administrator, or his or her representative. The quality system described in the QMP will be reviewed during the systems audits described in section 2.5 of this appendix. Organizations that implement long-term monitoring programs with EPA funds should have a separate QMP document. Smaller organizations, organizations that do infrequent work with the EPA or have monitoring programs of limited size or scope may combine the QMP with the QAPP if approved by, and subject to any conditions of the EPA. Additional guidance on this process can be found in reference 10 of this appendix. Approval of the recipient's QMP by the appropriate Regional Administrator or his or her representative may allow delegation of authority to the PQAOs independent quality assurance function to review and approve environmental data collection activities adequately described and covered under the scope of the QMP and documented in appropriate planning documents (QAPP). Where a PQAO or monitoring organization has been delegated authority to review and approve their QAPP, an electronic copy must be submitted to the EPA region at the time it is submitted to the PQAO/monitoring organization's QAPP approving authority. The QAPP will be reviewed by the EPA during systems audits or circ*mstances related to data quality. The QMP submission and approval dates for PQAOs/monitoring organizations must be reported to AQS either by the monitoring organization or the EPA Region.

2.1.2 The QAPP is a formal document describing, in sufficient detail, the quality system that must be implemented to ensure that the results of work performed will satisfy the stated objectives. PQAOs must develop QAPPs that describe how the organization intends to control measurement uncertainty to an appropriate level in order to achieve the data quality objectives for the EDO. The quality assurance policy of the EPA requires every EDO to have a written and approved QAPP prior to the start of the EDO. It is the responsibility of the PQAO/monitoring organization to adhere to this policy. The QAPP must be suitably documented in accordance with EPA requirements (reference 3 of this appendix) and include standard operating procedures for all EDOs either within the document or by appropriate reference. The QAPP must identify each PQAO operating monitors under the QAPP as well as generally identify the sites and monitors to which it is applicable either within the document or by appropriate reference. The QAPP submission and approval dates must be reported to AQS either by the monitoring organization or the EPA Region.

2.1.3 The PQAO/monitoring organization's quality system must have adequate resources both in personnel and funding to plan, implement, assess and report on the achievement of the requirements of this appendix and it's approved QAPP.

2.2Independence of Quality Assurance. The PQAO must provide for a quality assurance management function, that aspect of the overall management system of the organization that determines and implements the quality policy defined in a PQAO's QMP. Quality management includes strategic planning, allocation of resources and other systematic planning activities (e.g., planning, implementation, assessing and reporting) pertaining to the quality system. The quality assurance management function must have sufficient technical expertise and management authority to conduct independent oversight and assure the implementation of the organization's quality system relative to the ambient air quality monitoring program and should be organizationally independent of environmental data generation activities.

2.3.Data Quality Performance Requirements.

2.3.1Data Quality Objectives. The DQOs, or the results of other systematic planning processes, are statements that define the appropriate type of data to collect and specify the tolerable levels of potential decision errors that will be used as a basis for establishing the quality and quantity of data needed to support the monitoring objectives (reference 5 of this appendix). The DQOs will be developed by the EPA to support the primary regulatory objectives for each criteria pollutant. As they are developed, they will be added to the regulation. The quality of the conclusions derived from data interpretation can be affected by population uncertainty (spatial or temporal uncertainty) and measurement uncertainty (uncertainty associated with collecting, analyzing, reducing and reporting concentration data). This appendix focuses on assessing and controlling measurement uncertainty.

2.3.1.1Measurement Uncertainty for Automated and Manual PM2.5Methods. The goal for acceptable measurement uncertainty is defined for precision as an upper 90 percent confidence limit for the coefficient of variation (CV) of 10 percent and ±10 percent for total bias.

2.3.1.2Measurement Uncertainty for Automated O3Methods. The goal for acceptable measurement uncertainty is defined for precision as an upper 90 percent confidence limit for the CV of 7 percent and for bias as an upper 95 percent confidence limit for the absolute bias of 7 percent.

2.3.1.3Measurement Uncertainty for Pb Methods. The goal for acceptable measurement uncertainty is defined for precision as an upper 90 percent confidence limit for the CV of 20 percent and for bias as an upper 95 percent confidence limit for the absolute bias of 15 percent.

2.3.1.4Measurement Uncertainty for NO2. The goal for acceptable measurement uncertainty is defined for precision as an upper 90 percent confidence limit for the CV of 15 percent and for bias as an upper 95 percent confidence limit for the absolute bias of 15 percent.

2.3.1.5Measurement Uncertainty for SO2. The goal for acceptable measurement uncertainty for precision is defined as an upper 90 percent confidence limit for the CV of 10 percent and for bias as an upper 95 percent confidence limit for the absolute bias of 10 percent.

2.4National Performance Evaluation Programs. The PQAO shall provide for the implementation of a program of independent and adequate audits of all monitors providing data for NAAQS compliance purposes including the provision of adequate resources for such audit programs. A monitoring plan (or QAPP) which provides for PQAO participation in the EPA's National Performance Audit Program (NPAP), the PM2.5 Performance Evaluation Program (PM2.5-PEP) program and the Pb Performance Evaluation Program (Pb-PEP) and indicates the consent of the PQAO for the EPA to apply an appropriate portion of the grant funds, which the EPA would otherwise award to the PQAO for these QA activities, will be deemed by the EPA to meet this requirement. For clarification and to participate, PQAOs should contact either the appropriate EPA regional quality assurance (QA) coordinator at the appropriate EPA Regional Office location, or the NPAP coordinator at the EPA Air Quality Assessment Division, Office of Air Quality Planning and Standards, in Research Triangle Park, North Carolina. The PQAOs that plan to implement these programs (self-implement) rather than use the federal programs must meet the adequacy requirements found in the appropriate sections that follow, as well as meet the definition of independent assessment that follows.

2.4.1Independent assessment. An assessment performed by a qualified individual, group, or organization that is not part of the organization directly performing and accountable for the work being assessed. This auditing organization must not be involved with the generation of the ambient air monitoring data. An organization can conduct the performance evaluation (PE) if it can meet this definition and has a management structure that, at a minimum, will allow for the separation of its routine sampling personnel from its auditing personnel by two levels of management. In addition, the sample analysis of audit filters must be performed by a laboratory facility and laboratory equipment separate from the facilities used for routine sample analysis. Field and laboratory personnel will be required to meet PE field and laboratory training and certification requirements to establish comparability to federally implemented programs.

2.5Technical Systems Audit Program. Technical systems audits of each PQAO shall be conducted at least every 3 years by the appropriate EPA Regional Office and reported to the AQS. If a PQAO is made up of more than one monitoring organization, all monitoring organizations in the PQAO should be audited within 6 years (two TSA cycles of the PQAO). As an example, if a state has five local monitoring organizations that are consolidated under one PQAO, all five local monitoring organizations should receive a technical systems audit within a 6-year period. Systems audit programs are described in reference 10 of this appendix.

2.6Gaseous and Flow Rate Audit Standards.

2.6.1 Gaseous pollutant concentration standards (permeation devices or cylinders of compressed gas) used to obtain test concentrations for CO, SO2 , NO, and NO2 must be EPA Protocol Gases certified in accordance with one of the procedures given in Reference 4 of this appendix.

2.6.1.1 The concentrations of EPA Protocol Gas standards used for ambient air monitoring must be certified with a 95-percent confidence interval to have an analytical uncertainty of no more than ±2.0 percent (inclusive) of the certified concentration (tag value) of the gas mixture. The uncertainty must be calculated in accordance with the statistical procedures defined in Reference 4 of this appendix.

2.6.1.2 Specialty gas producers advertising certification with the procedures provided in Reference 4 of this appendix and distributing gases as “EPA Protocol Gas” for ambient air monitoring purposes must adhere to the regulatory requirements specified in 40 CFR 75.21(g) or not use “EPA” in any form of advertising. Monitoring organizations must provide information to the EPA on the specialty gas producers they use on an annual basis. PQAOs, when requested by the EPA, must participate in the EPA Ambient Air Protocol Gas Verification Program at least once every 5 years by sending a new unused standard to a designated verification laboratory.

2.6.2 Test concentrations for O3 must be obtained in accordance with the ultraviolet photometric calibration procedure specified inappendix D to Part 50 of this chapter and by means of a certified NIST-traceable O3 transfer standard. Consult references 7 and 8 of this appendix for guidance on transfer standards for O3.

2.6.3 Flow rate measurements must be made by a flow measuring instrument that is NIST-traceable to an authoritative volume or other applicable standard. Guidance for certifying some types of flowmeters is provided in reference 10 of this appendix.

2.7Primary Requirements and Guidance. Requirements and guidance documents for developing the quality system are contained in references 1 through 11 of this appendix, which also contain many suggested procedures, checks, and control specifications. Reference 10 describes specific guidance for the development of a quality system for data collected for comparison to the NAAQS. Many specific quality control checks and specifications for methods are included in the respective reference methods described in Part 50 of this chapter or in the respective equivalent method descriptions available from the EPA (reference 6 of this appendix). Similarly, quality control procedures related to specifically designated reference and equivalent method monitors are contained in the respective operation or instruction manuals associated with those monitors.

3. Measurement Quality Check Requirements

This section provides the requirements for PQAOs to perform the measurement quality checks that can be used to assess data quality. Data from these checks are required to be submitted to the AQS within the same time frame as routinely-collected ambient concentration data as described in 40 CFR 58.16. Table A-1 of this appendix provides a summary of the types and frequency of the measurement quality checks that will be described in this section.

3.1.Gaseous Monitors of SO2, NO2, O3, and CO.

3.1.1One-Point Quality Control (QC) Check for SO2, NO2, O3, and CO. (a) A one-point QC check must be performed at least once every 2 weeks on each automated monitor used to measure SO2, NO2, O3 and CO. With the advent of automated calibration systems, more frequent checking is strongly encouraged. See Reference 10 of this appendix for guidance on the review procedure. The QC check is made by challenging the monitor with a QC check gas of known concentration (effective concentration for open path monitors) between the prescribed range of 0.005 and 0.08 parts per million (ppm) for SO2, NO2, and O3, and between the prescribed range of 0.5 and 5 ppm for CO monitors. The QC check gas concentration selected within the prescribed range should be related to the monitoring objectives for the monitor. If monitoring at an NCore site or for trace level monitoring, the QC check concentration should be selected to represent the mean or median concentrations at the site. If the mean or median concentrations at trace gas sites are below the MDL of the instrument the agency can select the lowest concentration in the prescribed range that can be practically achieved. If the mean or median concentrations at trace gas sites are above the prescribed range the agency can select the highest concentration in the prescribed range. An additional QC check point is encouraged for those organizations that may have occasional high values or would like to confirm the monitors' linearity at the higher end of the operational range or around NAAQS concentrations. If monitoring for NAAQS decisions, the QC concentration can be selected at a higher concentration within the prescribed range but should also consider precision points around mean or median monitor concentrations.

(b) Point analyzers must operate in their normal sampling mode during the QC check and the test atmosphere must pass through all filters, scrubbers, conditioners and other components used during normal ambient sampling and as much of the ambient air inlet system as is practicable. The QC check must be conducted before any calibration or adjustment to the monitor.

(c) Open path monitors are tested by inserting a test cell containing a QC check gas concentration into the optical measurement beam of the instrument. If possible, the normally used transmitter, receiver, and as appropriate, reflecting devices should be used during the test, and the normal monitoring configuration of the instrument should be altered as little as possible to accommodate the test cell for the test. However, if permitted by the associated operation or instruction manual, an alternate local light source or an alternate optical path that does not include the normal atmospheric monitoring path may be used. The actual concentration of the QC check gas in the test cell must be selected to produce an effective concentration in the range specified earlier in this section. Generally, the QC test concentration measurement will be the sum of the atmospheric pollutant concentration and the QC test concentration. As such, the result must be corrected to remove the atmospheric concentration contribution. The corrected concentration is obtained by subtracting the average of the atmospheric concentrations measured by the open path instrument under test immediately before and immediately after the QC test from the QC check gas concentration measurement. If the difference between these before and after measurements is greater than 20 percent of the effective concentration of the test gas, discard the test result and repeat the test. If possible, open path monitors should be tested during periods when the atmospheric pollutant concentrations are relatively low and steady.

(d) Report the audit concentration of the QC gas and the corresponding measured concentration indicated by the monitor to AQS. The percent differences between these concentrations are used to assess the precision and bias of the monitoring data as described in sections 4.1.2 (precision) and 4.1.3 (bias) of this appendix.

3.1.2Annual performance evaluation for SO2,NO2,O3, or CO. A performance evaluation must be conducted on each primary monitor once a year. This can be accomplished by evaluating 25 percent of the primary monitors each quarter. The evaluation should be conducted by a trained experienced technician other than the routine site operator.

3.1.2.1 The evaluation is made by challenging the monitor with audit gas standards of known concentration from at least three audit levels. One point must be within two to three times the method detection limit of the instruments within the PQAOs network, the second point will be less than or equal to the 99th percentile of the data at the site or the network of sites in the PQAO or the next highest audit concentration level. The third point can be around the primary NAAQS or the highest 3-year concentration at the site or the network of sites in the PQAO. An additional 4th level is encouraged for those agencies that would like to confirm the monitors' linearity at the higher end of the operational range. In rare circ*mstances, there may be sites measuring concentrations above audit level 10. Notify the appropriate EPA region and the AQS program in order to make accommodations for auditing at levels above level 10.

Audit levelConcentration Range, ppm
O3SO2NO2CO
10.004-0.00590.0003-0.00290.0003-0.00290.020-0.059
20.006-0.0190.0030-0.00490.0030-0.00490.060-0.199
30.020-0.0390.0050-0.00790.0050-0.00790.200-0.899
40.040-0.0690.0080-0.01990.0080-0.01990.900-2.999
50.070-0.0890.0200-0.04990.0200-0.04993.000-7.999
60.090-0.1190.0500-0.09990.0500-0.09998.000-15.999
70.120-0.1390.1000-0.14990.1000-0.299916.000-30.999
80.140-0.1690.1500-0.25990.3000-0.499931.000-39.999
90.170-0.1890.2600-0.79990.5000-0.799940.000-49.999
100.190-0.2590.8000-1.0000.8000-1.00050.000-60.000

3.1.2.2 The standards from which audit gas test concentrations are obtained must meet the specifications of section 2.6.1 of this appendix. The gas standards and equipment used for the performance evaluation must not be the same as the standards and equipment used for one-point QC, calibrations, span evaluations or NPAP.

3.1.2.3 For point analyzers, the evaluation shall be carried out by allowing the monitor to analyze the audit gas test atmosphere in its normal sampling mode such that the test atmosphere passes through all filters, scrubbers, conditioners, and other sample inlet components used during normal ambient sampling and as much of the ambient air inlet system as is practicable.

3.1.2.4 Open-path monitors are evaluated by inserting a test cell containing the various audit gas concentrations into the optical measurement beam of the instrument. If possible, the normally used transmitter, receiver, and, as appropriate, reflecting devices should be used during the evaluation, and the normal monitoring configuration of the instrument should be modified as little as possible to accommodate the test cell for the evaluation. However, if permitted by the associated operation or instruction manual, an alternate local light source or an alternate optical path that does not include the normal atmospheric monitoring path may be used. The actual concentrations of the audit gas in the test cell must be selected to produce effective concentrations in the evaluation level ranges specified in this section of this appendix. Generally, each evaluation concentration measurement result will be the sum of the atmospheric pollutant concentration and the evaluation test concentration. As such, the result must be corrected to remove the atmospheric concentration contribution. The corrected concentration is obtained by subtracting the average of the atmospheric concentrations measured by the open path instrument under test immediately before and immediately after the evaluation test (or preferably before and after each evaluation concentration level) from the evaluation concentration measurement. If the difference between the before and after measurements is greater than 20 percent of the effective concentration of the test gas standard, discard the test result for that concentration level and repeat the test for that level. If possible, open path monitors should be evaluated during periods when the atmospheric pollutant concentrations are relatively low and steady. Also, if the open-path instrument is not installed in a permanent manner, the monitoring path length must be reverified to be within ±3 percent to validate the evaluation since the monitoring path length is critical to the determination of the effective concentration.

3.1.2.5 Report both the evaluation concentrations (effective concentrations for open-path monitors) of the audit gases and the corresponding measured concentration (corrected concentrations, if applicable, for open path monitors) indicated or produced by the monitor being tested to AQS. The percent differences between these concentrations are used to assess the quality of the monitoring data as described in section 4.1.1 of this appendix.

3.1.3National Performance Audit Program (NPAP).

The NPAP is a performance evaluation which is a type of audit where quantitative data are collected independently in order to evaluate the proficiency of an analyst, monitoring instrument or laboratory. Due to the implementation approach used in the program, NPAP provides a national independent assessment of performance while maintaining a consistent level of data quality. Details of the program can be found in reference 11 of this appendix. The program requirements include:

3.1.3.1 Performing audits of the primary monitors at 20 percent of monitoring sites per year, and 100 percent of the sites every 6 years. High-priority sites may be audited more frequently. Since not all gaseous criteria pollutants are monitored at every site within a PQAO, it is not required that 20 percent of the primary monitors for each pollutant receive an NPAP audit each year only that 20 percent of the PQAOs monitoring sites receive an NPAP audit. It is expected that over the 6-year period all primary monitors for all gaseous pollutants will receive an NPAP audit.

3.1.3.2 Developing a delivery system that will allow for the audit concentration gasses to be introduced to the probe inlet where logistically feasible.

3.1.3.3 Using audit gases that are verified against the NIST standard reference methods or special review procedures and validated per the certification periods specified in Reference 4 of this appendix (EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards) for CO, SO2 , and NO2 and using O3 analyzers that are verified quarterly against a standard reference photometer.

3.1.3.4 As described in section 2.4 of this appendix, the PQAO may elect, on an annual basis, to utilize the federally implemented NPAP program. If the PQAO plans to self-implement NPAP, the EPA will establish training and other technical requirements for PQAOs to establish comparability to federally implemented programs. In addition to meeting the requirements in sections 3.1.3.1 through 3.1.3.3 of this appendix, the PQAO must:

(a) Utilize an audit system equivalent to the federally implemented NPAP audit system and is separate from equipment used in annual performance evaluations.

(b) Perform a whole system check by having the NPAP system tested against an independent and qualified EPA lab, or equivalent.

(c) Evaluate the system with the EPA NPAP program through collocated auditing at an acceptable number of sites each year (at least one for an agency network of five or less sites; at least two for a network with more than five sites).

(d) Incorporate the NPAP in the PQAO's quality assurance project plan.

(e) Be subject to review by independent, EPA-trained personnel.

(f) Participate in initial and update training/certification sessions.

3.1.3.5 OAQPS, in consultation with the relevant EPA Regional Office, may approve the PQAO's plan to self-implement NPAP if the OAQPS determines that the PQAO's self-implementation plan is equivalent to the federal programs and adequate to meet the objectives of national consistency and data quality.

3.2PM2.5.

3.2.1Flow Rate Verification for PM2.5. A one-point flow rate verification check must be performed at least once every month (each verification minimally separated by 14 days) on each monitor used to measure PM2.5. The verification is made by checking the operational flow rate of the monitor. If the verification is made in conjunction with a flow rate adjustment, it must be made prior to such flow rate adjustment. For the standard procedure, use a flow rate transfer standard certified in accordance with section 2.6 of this appendix to check the monitor's normal flow rate. Care should be used in selecting and using the flow rate measurement device such that it does not alter the normal operating flow rate of the monitor. Report the flow rate of the transfer standard and the corresponding flow rate measured by the monitor to AQS. The percent differences between the audit and measured flow rates are used to assess the bias of the monitoring data as described in section 4.2.2 of this appendix (using flow rates in lieu of concentrations).

3.2.2Semi-Annual Flow Rate Audit for PM2.5. Audit the flow rate of the particulate monitor twice a year. The two audits should ideally be spaced between 5 and 7 months apart. The EPA strongly encourages more frequent auditing. The audit should (preferably) be conducted by a trained experienced technician other than the routine site operator. The audit is made by measuring the monitor's normal operating flow rate(s) using a flow rate transfer standard certified in accordance with section 2.6 of this appendix. The flow rate standard used for auditing must not be the same flow rate standard used for verifications or to calibrate the monitor. However, both the calibration standard and the audit standard may be referenced to the same primary flow rate or volume standard. Care must be taken in auditing the flow rate to be certain that the flow measurement device does not alter the normal operating flow rate of the monitor. Report the audit flow rate of the transfer standard and the corresponding flow rate measured by the monitor to AQS. The percent differences between these flow rates are used to evaluate monitor performance.

3.2.3Collocated Quality Control Sampling Procedures for PM2.5. For each pair of collocated monitors, designate one sampler as the primary monitor whose concentrations will be used to report air quality for the site, and designate the other as the quality control monitor. There can be only one primary monitor at a monitoring site for a given time period.

3.2.3.1 For each distinct monitoring method designation (FRM or FEM) that a PQAO is using for a primary monitor, the PQAO must have 15 percent of the primary monitors of each method designation collocated (values of 0.5 and greater round up); and have at least one collocated quality control monitor (if the total number of monitors is less than three). The first collocated monitor must be a designated FRM monitor.

3.2.3.2 In addition, monitors selected for collocation must also meet the following requirements:

(a) A primary monitor designated as an EPA FRM shall be collocated with a quality control monitor having the same EPA FRM method designation.

(b) For each primary monitor designated as an EPA FEM used by the PQAO, 50 percent of the monitors designated for collocation, or the first if only one collocation is necessary, shall be collocated with a FRM quality control monitor and 50 percent of the monitors shall be collocated with a monitor having the same method designation as the FEM primary monitor. If an odd number of collocated monitors is required, the additional monitor shall be a FRM quality control monitor. An example of the distribution of collocated monitors for each unique FEM is provided below. Table A-2 of this appendix demonstrates the collocation procedure with a PQAO having one type of primary FRM and multiple primary FEMs.

#Primary FEMS of a unique method
designation
#Collocated#Collocated with an FRM#Collocated with same method
designation
1-9110
10-16211
17-23321
24-29422
30-36532
37-43633

3.2.3.3 Since the collocation requirements are used to assess precision of the primary monitors and there can only be one primary monitor at a monitoring site, a site can only count for the collocation of the method designation of the primary monitor at that site.

3.2.3.4 The collocated monitors should be deployed according to the following protocol:

(a) Fifty percent of the collocated quality control monitors should be deployed at sites with annual average or daily concentrations estimated to be within plus or minus 20 percent of either the annual or 24-hour NAAQS and the remainder at the PQAOs discretion;

(b) If an organization has no sites with annual average or daily concentrations within ±20 percent of the annual NAAQS or 24-hour NAAQS, 50 percent of the collocated quality control monitors should be deployed at those sites with the annual mean concentrations or 24-hour concentrations among the highest for all sites in the network and the remainder at the PQAOs discretion.

(c) The two collocated monitors must be within 4 meters (inlet to inlet) of each other and at least 2 meters apart for flow rates greater than 200 liters/min or at least 1 meter apart for samplers having flow rates less than 200 liters/min to preclude airflow interference. A waiver allowing up to 10 meters horizontal distance and up to 3 meters vertical distance (inlet to inlet) between a primary and collocated sampler may be approved by the Regional Administrator for sites at a neighborhood or larger scale of representation during the annual network plan approval process. Sampling and analytical methodologies must be the consistently implemented for both primary and collocated quality control samplers and for all other samplers in the network.

(d) Sample the collocated quality control monitor on a 1-in-12 day schedule. Report the measurements from both primary and collocated quality control monitors at each collocated sampling site to AQS. The calculations for evaluating precision between the two collocated monitors are described in section 4.2.1 of this appendix.

3.2.4PM2.5 Performance Evaluation Program (PEP) Procedures. The PEP is an independent assessment used to estimate total measurement system bias. These evaluations will be performed under the national performance evaluation program (NPEP) as described in section 2.4 of this appendix or a comparable program. A prescribed number of Performance evaluation sampling events will be performed annually within each PQAO. For PQAOs with less than or equal to five monitoring sites, five valid performance evaluation audits must be collected and reported each year. For PQAOs with greater than five monitoring sites, eight valid performance evaluation audits must be collected and reported each year. A valid performance evaluation audit means that both the primary monitor and PEP audit concentrations are valid and equal to or greater than 2 µg/m3. Siting of the PEP monitor must be consistent with section 3.2.3.4(c) of this appendix. However, any horizontal distance greater than 4 meters and any vertical distance greater than one meter must be reported to the EPA regional PEP coordinator. Additionally for every monitor designated as a primary monitor, a primary quality assurance organization must:

3.2.4.1 Have each method designation evaluated each year; and,

3.2.4.2 Have all FRM, FEM or ARM samplers subject to a PEP audit at least once every 6 years, which equates to approximately 15 percent of the monitoring sites audited each year.

3.2.4.3. Additional information concerning the PEP is contained in reference 10 of this appendix. The calculations for evaluating bias between the primary monitor and the performance evaluation monitor for PM2.5 are described in section 4.2.5 of this appendix.

3.3PM10.

3.3.1Flow Rate Verification for PM10Low Volume Samplers (less than 200 liter/minute). A one-point flow rate verification check must be performed at least once every month (each verification minimally separated by 14 days) on each monitor used to measure PM10. The verification is made by checking the operational flow rate of the monitor. If the verification is made in conjunction with a flow rate adjustment, it must be made prior to such flow rate adjustment. For the standard procedure, use a flow rate transfer standard certified in accordance with section 2.6 of this appendix to check the monitor's normal flow rate. Care should be taken in selecting and using the flow rate measurement device such that it does not alter the normal operating flow rate of the monitor. The percent differences between the audit and measured flow rates are reported to AQS and used to assess the bias of the monitoring data as described in section 4.2.2 of this appendix (using flow rates in lieu of concentrations).

3.3.2Flow Rate Verification for PM10High Volume Samplers (greater than 200 liters/minute). For PM10 high volume samplers, the verification frequency is one verification every 90 days (quarter) with 4 in a year. Other than verification frequency, follow the same technical procedure as described in section 3.3.1 of this appendix.

3.3.3Semi-Annual Flow Rate Audit for PM10. Audit the flow rate of the particulate monitor twice a year. The two audits should ideally be spaced between 5 and 7 months apart. The EPA strongly encourages more frequent auditing. The audit should (preferably) be conducted by a trained experienced technician other than the routine site operator. The audit is made by measuring the monitor's normal operating flow rate using a flow rate transfer standard certified in accordance with section 2.6 of this appendix. The flow rate standard used for auditing must not be the same flow rate standard used for verifications or to calibrate the monitor. However, both the calibration standard and the audit standard may be referenced to the same primary flow rate or volume standard. Care must be taken in auditing the flow rate to be certain that the flow measurement device does not alter the normal operating flow rate of the monitor. Report the audit flow rate of the transfer standard and the corresponding flow rate measured by the monitor to AQS. The percent differences between these flow rates are used to evaluate monitor performance.

3.3.4Collocated Quality Control Sampling Procedures for Manual PM10. Collocated sampling for PM10 is only required for manual samplers. For each pair of collocated monitors, designate one sampler as the primary monitor whose concentrations will be used to report air quality for the site and designate the other as the quality control monitor.

3.3.4.1 For manual PM10 samplers, a PQAO must:

(a) Have 15 percent of the primary monitors collocated (values of 0.5 and greater round up); and

(b) Have at least one collocated quality control monitor (if the total number of monitors is less than three).

3.3.4.2 The collocated quality control monitors should be deployed according to the following protocol:

(a) Fifty percent of the collocated quality control monitors should be deployed at sites with daily concentrations estimated to be within plus or minus 20 percent of the applicable NAAQS and the remainder at the PQAOs discretion;

(b) If an organization has no sites with daily concentrations within plus or minus 20 percent of the NAAQS, 50 percent of the collocated quality control monitors should be deployed at those sites with the daily mean concentrations among the highest for all sites in the network and the remainder at the PQAOs discretion.

(c) The two collocated monitors must be within 4 meters (inlet to inlet) of each other and at least 2 meters apart for flow rates greater than 200 liters/min or at least 1 meter apart for samplers having flow rates less than 200 liters/min to preclude airflow interference. A waiver allowing up to 10 meters horizontal distance and up to 3 meters vertical distance (inlet to inlet) between a primary and collocated sampler may be approved by the Regional Administrator for sites at a neighborhood or larger scale of representation. This waiver may be approved during the annual network plan approval process. Sampling and analytical methodologies must be the consistently implemented for both collocated samplers and for all other samplers in the network.

(d) Sample the collocated quality control monitor on a 1-in-12 day schedule. Report the measurements from both primary and collocated quality control monitors at each collocated sampling site to AQS. The calculations for evaluating precision between the two collocated monitors are described in section 4.2.1 of this appendix.

(e) In determining the number of collocated quality control sites required for PM10, monitoring networks for lead (Pb-PM10) should be treated independently from networks for particulate matter (PM), even though the separate networks may share one or more common samplers. However, a single quality control monitor that meets the collocation requirements for Pb-PM10 and PM10 may serve as a collocated quality control monitor for both networks. Extreme care must be taken when using the filter from a quality control monitor for both PM10 and Pb analysis. A PM10 filter weighing should occur prior to any Pb analysis.

3.4Pb.

3.4.1Flow Rate Verification for Pb-PM10Low Volume Samplers (less than 200 liter/minute). A one-point flow rate verification check must be performed at least once every month (each verification minimally separated by 14 days) on each monitor used to measure Pb. The verification is made by checking the operational flow rate of the monitor. If the verification is made in conjunction with a flow rate adjustment, it must be made prior to such flow rate adjustment. For the standard procedure, use a flow rate transfer standard certified in accordance with section 2.6 of this appendix to check the monitor's normal flow rate. Care should be taken in selecting and using the flow rate measurement device such that it does not alter the normal operating flow rate of the monitor. The percent differences between the audit and measured flow rates are reported to AQS and used to assess the bias of the monitoring data as described in section 4.2.2 of this appendix (using flow rates in lieu of concentrations).

3.4.2Flow Rate Verification for Pb High Volume Samplers (greater than 200 liters/minute). For high volume samplers, the verification frequency is one verification every 90 days (quarter) with four in a year. Other than verification frequency, follow the same technical procedure as described in section 3.4.1 of this appendix.

3.4.3Semi-Annual Flow Rate Audit for Pb. Audit the flow rate of the particulate monitor twice a year. The two audits should ideally be spaced between 5 and 7 months apart. The EPA strongly encourages more frequent auditing. The audit should (preferably) be conducted by a trained experienced technician other than the routine site operator. The audit is made by measuring the monitor's normal operating flow rate using a flow rate transfer standard certified in accordance with section 2.6 of this appendix. The flow rate standard used for auditing must not be the same flow rate standard used for verifications or to calibrate the monitor. However, both the calibration standard and the audit standard may be referenced to the same primary flow rate or volume standard. Care must be taken in auditing the flow rate to be certain that the flow measurement device does not alter the normal operating flow rate of the monitor. Report the audit flow rate of the transfer standard and the corresponding flow rate measured by the monitor to AQS. The percent differences between these flow rates are used to evaluate monitor performance.

3.4.4 Collocated Quality Control Sampling for TSP Pb for monitoring sites other than non-source oriented NCore. For each pair of collocated monitors for manual TSP Pb samplers, designate one sampler as the primary monitor whose concentrations will be used to report air quality for the site, and designate the other as the quality control monitor.

3.4.4.1 A PQAO must:

(a) Have 15 percent of the primary monitors (not counting non-source oriented NCore sites in PQAO) collocated. Values of 0.5 and greater round up; and

(b) Have at least one collocated quality control monitor (if the total number of monitors is less than three).

3.4.4.2 The collocated quality control monitors should be deployed according to the following protocol:

(a) The first collocated Pb site selected must be the site measuring the highest Pb concentrations in the network. If the site is impractical, alternative sites, approved by the EPA Regional Administrator, may be selected. If additional collocated sites are necessary, collocated sites may be chosen that reflect average ambient air Pb concentrations in the network.

(b) The two collocated monitors must be within 4 meters (inlet to inlet) of each other and at least 2 meters apart for flow rates greater than 200 liters/min or at least 1 meter apart for samplers having flow rates less than 200 liters/min to preclude airflow interference.

(c) Sample the collocated quality control monitor on a 1-in-12 day schedule. Report the measurements from both primary and collocated quality control monitors at each collocated sampling site to AQS. The calculations for evaluating precision between the two collocated monitors are described in section 4.2.1 of this appendix.

3.4.5 Collocated Quality Control Sampling for Pb-PM10 at monitoring sites other than non-source oriented NCore. If a PQAO is monitoring for Pb-PM10 at sites other than at a non-source oriented NCore site then the PQAO must:

3.4.5.1 Have 15 percent of the primary monitors (not counting non-source oriented NCore sites in PQAO) collocated. Values of 0.5 and greater round up; and

3.4.5.2 Have at least one collocated quality control monitor (if the total number of monitors is less than three).

3.4.5.3 The collocated monitors should be deployed according to the following protocol:

(a) Fifty percent of the collocated quality control monitors should be deployed at sites with the highest 3-month average concentrations and the remainder at the PQAOs discretion.

(b) The two collocated monitors must be within 4 meters (inlet to inlet) of each other and at least 2 meters apart for flow rates greater than 200 liters/min or at least 1 meter apart for samplers having flow rates less than 200 liters/min to preclude airflow interference. A waiver allowing up to 10 meters horizontal distance and up to 3 meters vertical distance (inlet to inlet) between a primary and collocated sampler may be approved by the Regional Administrator for sites at a neighborhood or larger scale of representation. This waiver may be approved during the annual network plan approval process. Sampling and analytical methodologies must be the consistently implemented for both collocated samplers and for all other samplers in the network.

(c) Sample the collocated quality control monitor on a 1-in-12 day schedule. Report the measurements from both primary and collocated quality control monitors at each collocated sampling site to AQS. The calculations for evaluating precision between the two collocated monitors are described in section 4.2.1 of this appendix.

(d) In determining the number of collocated quality control sites required for Pb-PM10, monitoring networks for PM10 should be treated independently from networks for Pb-PM10, even though the separate networks may share one or more common samplers. However, a single quality control monitor that meets the collocation requirements for Pb-PM10 and PM10 may serve as a collocated quality control monitor for both networks. Extreme care must be taken when using a using the filter from a quality control monitor for both PM10 and Pb analysis. A PM10 filter weighing should occur prior to any Pb analysis.

3.4.6Pb Analysis Audits. Each calendar quarter, audit the Pb reference or equivalent method analytical procedure using filters containing a known quantity of Pb. These audit filters are prepared by depositing a Pb standard on unexposed filters and allowing them to dry thoroughly. The audit samples must be prepared using batches of reagents different from those used to calibrate the Pb analytical equipment being audited. Prepare audit samples in the following concentration ranges:

RangeEquivalent ambient Pb
concentration, µg/m3
130-100% of Pb NAAQS.
2200-300% of Pb NAAQS.

(a) Extract the audit samples using the same extraction procedure used for exposed filters.

(b) Analyze three audit samples in each of the two ranges each quarter samples are analyzed. The audit sample analyses shall be distributed as much as possible over the entire calendar quarter.

(c) Report the audit concentrations (in µg Pb/filter or strip) and the corresponding measured concentrations (in µg Pb/filter or strip) to AQS using AQS unit code 077. The percent differences between the concentrations are used to calculate analytical accuracy as described in section 4.2.6 of this appendix.

3.4.7 Pb PEP Procedures for monitoring sites other than non-source oriented NCore. The PEP is an independent assessment used to estimate total measurement system bias. These evaluations will be performed under the NPEP described in section 2.4 of this appendix or a comparable program. Each year, one performance evaluation audit must be performed at one Pb site in each primary quality assurance organization that has less than or equal to five sites and two audits at PQAOs with greater than five sites. Non-source oriented NCore sites are not counted. Siting of the PEP monitor must be consistent with section 3.4.5.3(b). However, any horizontal distance greater than 4 meters and any vertical distance greater than 1 meter must be reported to the EPA regional PEP coordinator. In addition, each year, four collocated samples from PQAOs with less than or equal to five sites and six collocated samples at PQAOs with greater than five sites must be sent to an independent laboratory, the same laboratory as the performance evaluation audit, for analysis. The calculations for evaluating bias between the primary monitor and the performance evaluation monitor for Pb are described in section 4.2.4 of this appendix.

4. Calculations for Data Quality Assessments

(a) Calculations of measurement uncertainty are carried out by the EPA according to the following procedures. The PQAOs must report the data to AQS for all measurement quality checks as specified in this appendix even though they may elect to perform some or all of the calculations in this section on their own.

(b) The EPA will provide annual assessments of data quality aggregated by site and PQAO for SO2, NO2, O3 and CO and by PQAO for PM10, PM2.5, and Pb.

(c) At low concentrations, agreement between the measurements of collocated quality control samplers, expressed as relative percent difference or percent difference, may be relatively poor. For this reason, collocated measurement pairs are selected for use in the precision and bias calculations only when both measurements are equal to or above the following limits:

(1) Pb: 0.002 µg/m3 (Methods approved after 3/04/2010, with exception of manual equivalent method EQLA-0813-803).

(2) Pb: 0.02 µg/m3 (Methods approved before 3/04/2010, and manual equivalent method EQLA-0813-803).

(3) PM10 (Hi-Vol): 15 µg/m3.

(4) PM10 (Lo-Vol): 3 µg/m3.

(5) PM2.5: 3 µg/m3.

4.1Statistics for the Assessment of QC Checks for SO2, NO2, O3 and CO.

4.1.1Percent Difference. Many of the measurement quality checks start with a comparison of an audit concentration or value (flow rate) to the concentration/value measured by the monitor and use percent difference as the comparison statistic as described in equation 1 of this section. For each single point check, calculate the percent difference,di, as follows:


Minnesota marijuana law takes dual approach to testing (13)

wheremeas is the concentration indicated by the PQAO's instrument andaudit is the audit concentration of the standard used in the QC check being measured.

4.1.2Precision Estimate. The precision estimate is used to assess the one-point QC checks for SO2, NO2, O3, or CO described in section 3.1.1 of this appendix. The precision estimator is the coefficient of variation upper bound and is calculated using equation 2 of this section:


Minnesota marijuana law takes dual approach to testing (14)

wheren is the number of single point checks being aggregated; X20.1,n-1 is the 10th percentile of a chi-squared distribution with n-1 degrees of freedom.

4.1.3Bias Estimate. The bias estimate is calculated using the one-point QC checks for SO2, NO2, O3, or CO described in section 3.1.1 of this appendix. The bias estimator is an upper bound on the mean absolute value of the percent differences as described in equation 3 of this section:


Minnesota marijuana law takes dual approach to testing (15)

wheren is the number of single point checks being aggregated; t0.95,n-1 is the 95th quantile of a t-distribution with n-1 degrees of freedom; the quantityAB is the mean of the absolute values of thedi ′ s and is calculated using equation 4 of this section:


Minnesota marijuana law takes dual approach to testing (16)

and the quantityAS is the standard deviation of the absolute value of thedi ′ s and is calculated using equation 5 of this section:


Minnesota marijuana law takes dual approach to testing (17)

4.1.3.1Assigning a sign (positive/negative) to the bias estimate. Since the bias statistic as calculated in equation 3 of this appendix uses absolute values, it does not have a tendency (negative or positive bias) associated with it. A sign will be designated by rank ordering the percent differences of the QC check samples from a given site for a particular assessment interval.

4.1.3.2 Calculate the 25th and 75th percentiles of the percent differences for each site. The absolute bias upper bound should be flagged as positive if both percentiles are positive and negative if both percentiles are negative. The absolute bias upper bound would not be flagged if the 25th and 75th percentiles are of different signs.

4.2Statistics for the Assessment of PM10, PM2.5, and Pb.

4.2.1Collocated Quality Control Sampler Precision Estimate for PM10, PM2.5, and Pb . Precision is estimated via duplicate measurements from collocated samplers. It is recommended that the precision be aggregated at the PQAO level quarterly, annually, and at the 3-year level. The data pair would only be considered valid if both concentrations are greater than or equal to the minimum values specified in section 4(c) of this appendix. For each collocated data pair, calculateti, using equation 6 to this appendix:


Minnesota marijuana law takes dual approach to testing (18)

WhereXi is the concentration from the primary sampler andYi is the concentration value from the audit sampler. The coefficient of variation upper bound is calculated using equation 7 to this appendix:


Minnesota marijuana law takes dual approach to testing (19)

Wherek is the number of valid data pairs being aggregated, and X20.1,k-1 is the 10th percentile of a chi-squared distribution with k-1 degrees of freedom. The factor of 2 in the denominator adjusts for the fact that eachti is calculated from two values with error.

4.2.2One-Point Flow Rate Verification Bias Estimate forPM10,PM2.5and Pb. For each one-point flow rate verification, calculate the percent difference in volume using equation 1 of this appendix wheremeas is the value indicated by the sampler's volume measurement andaudit is the actual volume indicated by the auditing flow meter. The absolute volume bias upper bound is then calculated using equation 3, wheren is the number of flow rate audits being aggregated; t0.95,n-1 is the 95th quantile of a t-distribution with n-1 degrees of freedom, the quantityAB is the mean of the absolute values of thedi′s and is calculated using equation 4 of this appendix, and the quantityAS in equation 3 of this appendix is the standard deviation of the absolute values if thedi′s and is calculated using equation 5 of this appendix.

4.2.3Semi-Annual Flow Rate Audit Bias Estimate forPM10,PM2.5and Pb. Use the same procedure described in section 4.2.2 for the evaluation of flow rate audits.

4.2.4Performance Evaluation Programs Bias Estimate for Pb. The Pb bias estimate is calculated using the paired routine and the PEP monitor as described in section 3.4.7. Use the same procedures as described in section 4.1.3 of this appendix.

4.2.5Performance Evaluation Programs Bias Estimate for PM2.5 . The bias estimate is calculated using the PEP audits described in section 3.2.4. of this appendix. The bias estimator is based on, si , the absolute difference in concentrations divided by the square root of the PEP concentration.


Minnesota marijuana law takes dual approach to testing (20)

4.2.6PbAnalysis Audit Bias Estimate. The bias estimate is calculated using the analysis audit data described in section 3.4.6. Use the same bias estimate procedure as described in section 4.1.3 of this appendix.

5. Reporting Requirements

5.1Reporting Requirements. For each pollutant, prepare a list of all monitoring sites and their AQS site identification codes in each PQAO and submit the list to the appropriate EPA Regional Office, with a copy to AQS. Whenever there is a change in this list of monitoring sites in a PQAO, report this change to the EPA Regional Office and to AQS.

5.1.1Quarterly Reports. For each quarter, each PQAO shall report to AQS directly (or via the appropriate EPA Regional Office for organizations not direct users of AQS) the results of all valid measurement quality checks it has carried out during the quarter. The quarterly reports must be submitted consistent with the data reporting requirements specified for air quality data as set forth in 40 CFR 58.16. The EPA strongly encourages early submission of the quality assurance data in order to assist the PQAOs ability to control and evaluate the quality of the ambient air data.

5.1.2Annual Reports.

5.1.2.1 When the PQAO has certified relevant data for the calendar year, the EPA will calculate and report the measurement uncertainty for the entire calendar year.

6. References

(1) American National Standard Institute—Quality Management Systems For Environmental Information And Technology Programs—Requirements With Guidance For Use. ASQ/ANSI E4–2014. February 2014. Available from ANSI Webstorehttps://webstore.ansi.org/.

(2) EPA Requirements for Quality Management Plans. EPA QA/R-2. EPA/240/B-01/002. March 2001, Reissue May 2006. Office of Environmental Information, Washington DC 20460.http://www.epa.gov/quality/agency-wide-quality-system-documents.

(3) EPA Requirements for Quality Assurance Project Plans for Environmental Data Operations. EPA QA/R-5. EPA/240/B-01/003. March 2001, Reissue May 2006. Office of Environmental Information, Washington DC 20460.http://www.epa.gov/quality/agency-wide-quality-system-documents.

(4) EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards. EPA–600/R–12/531. May, 2012. Available from U.S. Environmental Protection Agency, National Risk Management Research Laboratory, Research Triangle Park NC 27711.https://www.epa.gov/nscep.

(5) Guidance for the Data Quality Objectives Process. EPA QA/G-4. EPA/240/B-06/001. February, 2006. Office of Environmental Information, Washington DC 20460.http://www.epa.gov/quality/agency-wide-quality-system-documents.

(6) List of Designated Reference and Equivalent Methods. Available from U.S. Environmental Protection Agency, Center for Environmental Measurements and Modeling, Air Methods and Characterization Division, MD–D205–03, Research Triangle Park, NC 27711.https://www.epa.gov/amtic/air-monitoring-methods-criteria-pollutants.

(7) Transfer Standards for the Calibration of Ambient Air Monitoring Analyzers for Ozone. EPA–454/B–13–004 U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, October, 2013.https://www.epa.gov/sites/default/files/2020-09/documents/ozonetransferstandardguidance.pdf.

(8) Paur, R.J. and F.F. McElroy. Technical Assistance Document for the Calibration of Ambient Ozone Monitors. EPA-600/4-79-057. U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, September, 1979.http://www.epa.gov/ttn/amtic/cpreldoc.html.

(9) Quality Assurance Handbook for Air Pollution Measurement Systems, Volume 1—A Field Guide to Environmental Quality Assurance. EPA–600/R–94/038a. April 1994. Available from U.S. Environmental Protection Agency, ORD Publications Office, Center for Environmental Research Information (CERI), 26 W. Martin Luther King Drive, Cincinnati, OH 45268.https://www.epa.gov/amtic/ambient-air-monitoring-quality-assurance#documents.

(10) Quality Assurance Handbook for Air Pollution Measurement Systems, Volume II: Ambient Air Quality Monitoring Program Quality System Development. EPA–454/B–13–003.https://www.epa.gov/amtic/ambient-air-monitoring-quality-assurance#documents.

(11) National Performance Evaluation Program Standard Operating Procedures.https://www.epa.gov/amtic/ambient-air-monitoring-quality-assurance#npep.

Table A–1 to Section 6 of Appendix A—Minimum Data Assessment Requirements for NAAQS Related Criteria Pollutant Monitors
MethodAssessment methodCoverageMinimum frequencyParameters reportedAQS assessment type
1 Effective concentration for open path analyzers.
2 Corrected concentration, if applicable for open path analyzers.
3 Both primary and collocated sampler values are reported as raw data.
4 PM2.5 is the only particulate criteria pollutant requiring collocation of continuous and manual primary monitors.
5 EPA's recommended maximum number of days that should exist between checks to ensure that the checks are routinely conducted over time and to limit data impacts resulting from a failed check.
Gaseous Methods (CO, NO2 , SO2 , O3):
One-Point QC for SO2 , NO2 , O3 , COResponse check at concentration 0.005–0.08 ppm SO2 , NO2 , O3 , and 0.5 and 5 ppm COEach analyzerOnce per 2 weeks5Audit concentration1 and measured concentration.2One-Point QC.
Annual performance evaluation for SO2 , NO2 , O3 , COSee section 3.1.2 of this appendixEach analyzerOnce per yearAudit concentration1 and measured concentration2 for each levelAnnual PE.
NPAP for SO2 , NO2 , O3 , COIndependent Audit20% of sites each yearOnce per yearAudit concentration1 and measured concentration2 for each levelNPAP.
Particulate Methods:
Continuous4 method—collocated quality control sampling PM2.5Collocated samplers15%1-in-12 daysPrimary sampler concentration and duplicate sampler concentration.3No Transaction reported as raw data.
Manual method—collocated quality control sampling PM10 , PM2.5 , Pb-TSP, Pb-PM10Collocated samplers15%1-in-12 daysPrimary sampler concentration and duplicate sampler concentration.3No Transaction reported as raw data.
Flow rate verification PM10 (low Vol) PM2.5 , Pb-PM10Check of sampler flow rateEach samplerOnce every month5Audit flow rate and measured flow rate indicated by the samplerFlow Rate Verification.
Flow rate verification PM10 (High-Vol), Pb-TSPCheck of sampler flow rateEach samplerOnce every quarter5Audit flow rate and measured flow rate indicated by the samplerFlow Rate Verification.
Semi-annual flow rate audit PM10 , TSP, PM10 –2.5, PM2.5 , Pb-TSP, Pb-PM10Check of sampler flow rate using independent standardEach samplerOnce every 6 months5Audit flow rate and measured flow rate indicated by the samplerSemi Annual Flow Rate Audit.
Pb analysis audits Pb-TSP, Pb-PM10Check of analytical system with Pb audit strips/filtersAnalyticalOnce each quarter5Measured value and audit value (ug Pb/filter) using AQS unit code 077Pb Analysis Audits.
Performance Evaluation Program PM2.5Collocated samplers(1) 5 valid audits for primary QA orgs, with ≤5 sites (2) 8 valid audits for primary QA orgs, with >5 sites (3) All samplers in 6 yearsDistributed over all 4 quarters5Primary sampler concentration and performance evaluation sampler concentrationPEP.
Performance Evaluation Program Pb-TSP, Pb-PM10Collocated samplers(1) 1 valid audit and 4 collocated samples for primary QA orgs, with ≤5 sites (2) 2 valid audits and 6 collocated samples for primary QA orgs with >5 sitesDistributed over all 4 quarters5Primary sampler concentration and performance evaluation sampler concentration. Primary sampler concentration and duplicate sampler concentrationPEP.
Table A-2 of Appendix A to Part 58 - Summary of PM2.5 Number and Type of Collocation (15% Collocation Requirement) Required Using an Example of a PQAO That Has 54 Primary Monitors (54 sites) With One Federal Reference Method Type and Three Types of Approved Federal Equivalent Methods
Primary sampler method designationTotal No. of monitorsTotal No. of collocatedNo. of
collocated
with FRM
No. of
collocated
with same
method
designation
as primary
FRM20333
FEM (A)20321
FEM (B)2110
FEM (C)12211

Appendix B to Part 58 - Quality Assurance Requirements for Prevention of Significant Deterioration (PSD) Air Monitoring

1. General Information

2. Quality System Requirements

3. Measurement Quality Check Requirements

4. Calculations for Data Quality Assessments

5. Reporting Requirements

6. References

1. General Information

1.1Applicability.

(a) This appendix specifies the minimum quality assurance requirements for the control and assessment of the quality of the ambient air monitoring data submitted to a PSD reviewing authority or the EPA by an organization operating an air monitoring station, or network of stations, operated in order to comply with Part 51 New Source Review - Prevention of Significant Deterioration (PSD). Such organizations are encouraged to develop and maintain quality assurance programs more extensive than the required minimum. Additional guidance for the requirements reflected in this appendix can be found in the “Quality Assurance Handbook for Air Pollution Measurement Systems,” Volume II (Ambient Air) and “Quality Assurance Handbook for Air Pollution Measurement Systems,” Volume IV (Meteorological Measurements) and at a national level in references 1, 2, and 3 of this appendix.

(b) It is not assumed that data generated for PSD under this appendix will be used in making NAAQS decisions. However, if all the requirements in this appendix are followed (including the NPEP programs) and reported to AQS, with review and concurrence from the EPA region, data may be used for NAAQS decisions. With the exception of the NPEP programs (NPAP, PM2.5 PEP, Pb-PEP), for which implementation is at the discretion of the PSD reviewing authority, all other quality assurance and quality control requirements found in the appendix must be met.

1.2PSD Primary Quality Assurance Organization (PQAO). A PSD PQAO is defined as a monitoring organization or a coordinated aggregation of such organizations that is responsible for a set of stations within one PSD reviewing authority that monitors the same pollutant and for which data quality assessments will be pooled. Each criteria pollutant sampler/monitor must be associated with only one PSD PQAO.

1.2.1 Each PSD PQAO shall be defined such that measurement uncertainty among all stations in the organization can be expected to be reasonably hom*ogeneous, as a result of common factors. A PSD PQAO must be associated with only one PSD reviewing authority. Common factors that should be considered in defining PSD PQAOs include:

(a) Operation by a common team of field operators according to a common set of procedures;

(b) Use of a common QAPP and/or standard operating procedures;

(c) Common calibration facilities and standards;

(d) Oversight by a common quality assurance organization; and

(e) Support by a common management organization or laboratory.

1.2.2 PSD monitoring organizations having difficulty describing its PQAO or in assigning specific monitors to a PSD PQAO should consult with the PSD reviewing authority. Any consolidation of PSD PQAOs shall be subject to final approval by the PSD reviewing authority.

1.2.3 Each PSD PQAO is required to implement a quality system that provides sufficient information to assess the quality of the monitoring data. The quality system must, at a minimum, include the specific requirements described in this appendix. Failure to conduct or pass a required check or procedure, or a series of required checks or procedures, does not by itself invalidate data for regulatory decision making. Rather, PSD PQAOs and the PSD reviewing authority shall use the checks and procedures required in this appendix in combination with other data quality information, reports, and similar documentation that demonstrate overall compliance with parts 51, 52 and 58 of this chapter. Accordingly, the PSD reviewing authority shall use a “weight of evidence” approach when determining the suitability of data for regulatory decisions. The PSD reviewing authority reserves the authority to use or not use monitoring data submitted by a PSD monitoring organization when making regulatory decisions based on the PSD reviewing authority's assessment of the quality of the data. Generally, consensus built validation templates or validation criteria already approved in quality assurance project plans (QAPPs) should be used as the basis for the weight of evidence approach.

1.3Definitions.

(a)Measurement Uncertainty. A term used to describe deviations from a true concentration or estimate that are related to the measurement process and not to spatial or temporal population attributes of the air being measured.

(b)Precision. A measurement of mutual agreement among individual measurements of the same property usually under prescribed similar conditions, expressed generally in terms of the standard deviation.

(c)Bias. The systematic or persistent distortion of a measurement process which causes errors in one direction.

(d)Accuracy. The degree of agreement between an observed value and an accepted reference value. Accuracy includes a combination of random error (imprecision) and systematic error (bias) components which are due to sampling and analytical operations.

(e)Completeness. A measure of the amount of valid data obtained from a measurement system compared to the amount that was expected to be obtained under correct, normal conditions.

(f)Detectability. The low critical range value of a characteristic that a method specific procedure can reliably discern.

1.4Measurement Quality Check Reporting. The measurement quality checks described in section 3 of this appendix, are required to be submitted to the PSD reviewing authority within the same time frame as routinely-collected ambient concentration data as described in 40 CFR 58.16. The PSD reviewing authority may as well require that the measurement quality check data be reported to AQS.

1.5Assessments and Reports. Periodic assessments and documentation of data quality are required to be reported to the PSD reviewing authority. To provide national uniformity in this assessment and reporting of data quality for all networks, specific assessment and reporting procedures are prescribed in detail in sections 3, 4, and 5 of this appendix.

2. Quality System Requirements

A quality system (reference 1 of this appendix) is the means by which an organization manages the quality of the monitoring information it produces in a systematic, organized manner. It provides a framework for planning, implementing, assessing and reporting work performed by an organization and for carrying out required quality assurance and quality control activities.

2.1Quality Assurance Project Plans. All PSD PQAOs must develop a quality system that is described and approved in quality assurance project plans (QAPP) to ensure that the monitoring results:

(a) Meet a well-defined need, use, or purpose (reference 5 of this appendix);

(b) Provide data of adequate quality for the intended monitoring objectives;

(c) Satisfy stakeholder expectations;

(d) Comply with applicable standards specifications;

(e) Comply with statutory (and other legal) requirements; and

(f) Assure quality assurance and quality control adequacy and independence.

2.1.1 The QAPP is a formal document that describes these activities in sufficient detail and is supported by standard operating procedures. The QAPP must describe how the organization intends to control measurement uncertainty to an appropriate level in order to achieve the objectives for which the data are collected. The QAPP must be documented in accordance with EPA requirements (reference 3 of this appendix).

2.1.2 The PSD PQAO's quality system must have adequate resources both in personnel and funding to plan, implement, assess and report on the achievement of the requirements of this appendix and it's approved QAPP.

2.1.3 Incorporation of quality management plan (QMP) elements into the QAPP. The QMP describes the quality system in terms of the organizational structure, functional responsibilities of management and staff, lines of authority, and required interfaces for those planning, implementing, assessing and reporting activities involving environmental data operations (EDO). The PSD PQAOs may combine pertinent elements of the QMP into the QAPP rather than requiring the submission of both QMP and QAPP documents separately, with prior approval of the PSD reviewing authority. Additional guidance on QMPs can be found in reference 2 of this appendix.

2.2 Independence of Quality Assurance Management. The PSD PQAO must provide for a quality assurance management function for its PSD data collection operation, that aspect of the overall management system of the organization that determines and implements the quality policy defined in a PSD PQAO's QAPP. Quality management includes strategic planning, allocation of resources and other systematic planning activities (e.g., planning, implementation, assessing and reporting) pertaining to the quality system. The quality assurance management function must have sufficient technical expertise and management authority to conduct independent oversight and assure the implementation of the organization's quality system relative to the ambient air quality monitoring program and should be organizationally independent of environmental data generation activities.

2.3Data Quality Performance Requirements.

2.3.1Data Quality Objectives (DQOs). The DQOs, or the results of other systematic planning processes, are statements that define the appropriate type of data to collect and specify the tolerable levels of potential decision errors that will be used as a basis for establishing the quality and quantity of data needed to support air monitoring objectives (reference 5 of the appendix). The DQOs have been developed by the EPA to support attainment decisions for comparison to national ambient air quality standards (NAAQS). The PSD reviewing authority and the PSD monitoring organization will be jointly responsible for determining whether adherence to the EPA developed NAAQS DQOs specified inappendix A of this part are appropriate or if DQOs from a project-specific systematic planning process are necessary.

2.3.1.1Measurement Uncertainty for Automated and Manual PM2.5Methods. The goal for acceptable measurement uncertainty for precision is defined as an upper 90 percent confidence limit for the coefficient of variation (CV) of 10 percent and plus or minus 10 percent for total bias.

2.3.1.2Measurement Uncertainty for Automated Ozone Methods. The goal for acceptable measurement uncertainty is defined for precision as an upper 90 percent confidence limit for the CV of 7 percent and for bias as an upper 95 percent confidence limit for the absolute bias of 7 percent.

2.3.1.3Measurement Uncertainty for Pb Methods. The goal for acceptable measurement uncertainty is defined for precision as an upper 90 percent confidence limit for the CV of 20 percent and for bias as an upper 95 percent confidence limit for the absolute bias of 15 percent.

2.3.1.4Measurement Uncertainty for NO2. The goal for acceptable measurement uncertainty is defined for precision as an upper 90 percent confidence limit for the CV of 15 percent and for bias as an upper 95 percent confidence limit for the absolute bias of 15 percent.

2.3.1.5Measurement Uncertainty for SO2. The goal for acceptable measurement uncertainty for precision is defined as an upper 90 percent confidence limit for the CV of 10 percent and for bias as an upper 95 percent confidence limit for the absolute bias of 10 percent.

2.4National Performance Evaluation Program. Organizations operating PSD monitoring networks are required to implement the EPA's national performance evaluation program (NPEP) if the data will be used for NAAQS decisions and at the discretion of the PSD reviewing authority if PSD data are not used for NAAQS decisions. The NPEP includes the National Performance Audit Program (NPAP), the PM2.5 Performance Evaluation Program (PM2.5-PEP) and the Pb Performance Evaluation Program (Pb-PEP). The PSD QAPP shall provide for the implementation of NPEP including the provision of adequate resources for such NPEP if the data will be used for NAAQS decisions or if required by the PSD reviewing authority. Contact the PSD reviewing authority to determine the best procedure for implementing the audits which may include an audit by the PSD reviewing authority, a contractor certified for the activity, or through self-implementation which is described in sections below. A determination of which entity will be performing this audit program should be made as early as possible and during the QAPP development process. The PSD PQAOs, including contractors that plan to implement these programs on behalf of PSD PQAOs, that plan to implement these programs (self-implement) rather than use the federal programs, must meet the adequacy requirements found in the appropriate sections that follow, as well as meet the definition of independent assessment that follows.

2.4.1Independent Assessment. An assessment performed by a qualified individual, group, or organization that is not part of the organization directly performing and accountable for the work being assessed. This auditing organization must not be involved with the generation of the routinely-collected ambient air monitoring data. An organization can conduct the performance evaluation (PE) if it can meet this definition and has a management structure that, at a minimum, will allow for the separation of its routine sampling personnel from its auditing personnel by two levels of management. In addition, the sample analysis of audit filters must be performed by a laboratory facility and laboratory equipment separate from the facilities used for routine sample analysis. Field and laboratory personnel will be required to meet the performance evaluation field and laboratory training and certification requirements. The PSD PQAO will be required to participate in the centralized field and laboratory standards certification and comparison processes to establish comparability to federally implemented programs.

2.5Technical Systems Audit Program. The PSD reviewing authority or the EPA may conduct system audits of the ambient air monitoring programs or organizations operating PSD networks. The PSD monitoring organizations shall consult with the PSD reviewing authority to verify the schedule of any such technical systems audit. Systems audit programs are described in reference 10 of this appendix.

2.6Gaseous and Flow Rate Audit Standards.

2.6.1 Gaseous pollutant concentration standards (permeation devices or cylinders of compressed gas) used to obtain test concentrations for CO, SO2 , NO, and NO2 must be EPA Protocol Gases certified in accordance with one of the procedures given in Reference 4 of this appendix.

2.6.1.1 The concentrations of EPA Protocol Gas standards used for ambient air monitoring must be certified with a 95-percent confidence interval to have an analytical uncertainty of no more than ±2.0 percent (inclusive) of the certified concentration (tag value) of the gas mixture. The uncertainty must be calculated in accordance with the statistical procedures defined in Reference 4 of this appendix.

2.6.1.2 Specialty gas producers advertising certification with the procedures provided in Reference 4 of this appendix and distributing gases as “EPA Protocol Gas” for ambient air monitoring purposes must adhere to the regulatory requirements specified in 40 CFR 75.21(g) or not use “EPA” in any form of advertising. The PSD PQAOs must provide information to the PSD reviewing authority on the specialty gas producers they use (or will use) for the duration of the PSD monitoring project. This information can be provided in the QAPP or monitoring plan but must be updated if there is a change in the specialty gas producers used.

2.6.2 Test concentrations for ozone (O3) must be obtained in accordance with the ultraviolet photometric calibration procedure specified inappendix D to Part 50, and by means of a certified NIST-traceable O3 transfer standard. Consult references 7 and 8 of this appendix for guidance on transfer standards for O3.

2.6.3 Flow rate measurements must be made by a flow measuring instrument that is NIST-traceable to an authoritative volume or other applicable standard. Guidance for certifying some types of flow-meters is provided in reference 10 of this appendix.

2.7 Primary Requirements and Guidance. Requirements and guidance documents for developing the quality system are contained in references 1 through 11 of this appendix, which also contain many suggested procedures, checks, and control specifications. Reference 10 describes specific guidance for the development of a quality system for data collected for comparison to the NAAQS. Many specific quality control checks and specifications for methods are included in the respective reference methods described in Part 50 or in the respective equivalent method descriptions available from the EPA (reference 6 of this appendix). Similarly, quality control procedures related to specifically designated reference and equivalent method monitors are contained in the respective operation or instruction manuals associated with those monitors. For PSD monitoring, the use of reference and equivalent method monitors are required.

3. Measurement Quality Check Requirements

This section provides the requirements for PSD PQAOs to perform the measurement quality checks that can be used to assess data quality. Data from these checks are required to be submitted to the PSD reviewing authority within the same time frame as routinely-collected ambient concentration data as described in 40 CFR 58.16. Table B-1 of this appendix provides a summary of the types and frequency of the measurement quality checks that are described in this section. Reporting these results to AQS may be required by the PSD reviewing authority.

3.1Gaseous monitors of SO2,NO2,O3,and CO.

3.1.1One-Point Quality Control (QC) Check for SO2,NO2,O3,andCO. (a) A one-point QC check must be performed at least once every 2 weeks on each automated monitor used to measure SO2, NO2, O3 and CO. With the advent of automated calibration systems, more frequent checking is strongly encouraged and may be required by the PSD reviewing authority. See Reference 10 of this appendix for guidance on the review procedure. The QC check is made by challenging the monitor with a QC check gas of known concentration (effective concentration for open path monitors) between the prescribed range of 0.005 and 0.08 parts per million (ppm) for SO2, NO2, and O3, and between the prescribed range of 0.5 and 5 ppm for CO monitors. The QC check gas concentration selected within the prescribed range should be related to monitoring objectives for the monitor. If monitoring for trace level monitoring, the QC check concentration should be selected to represent the mean or median concentrations at the site. If the mean or median concentrations at trace gas sites are below the MDL of the instrument the agency can select the lowest concentration in the prescribed range that can be practically achieved. If the mean or median concentrations at trace gas sites are above the prescribed range the agency can select the highest concentration in the prescribed range. The PSD monitoring organization will consult with the PSD reviewing authority on the most appropriate one-point QC concentration based on the objectives of the monitoring activity. An additional QC check point is encouraged for those organizations that may have occasional high values or would like to confirm the monitors' linearity at the higher end of the operational range or around NAAQS concentrations. If monitoring for NAAQS decisions the QC concentration can be selected at a higher concentration within the prescribed range but should also consider precision points around mean or median concentrations.

(b) Point analyzers must operate in their normal sampling mode during the QC check and the test atmosphere must pass through all filters, scrubbers, conditioners and other components used during normal ambient sampling and as much of the ambient air inlet system as is practicable. The QC check must be conducted before any calibration or adjustment to the monitor.

(c) Open-path monitors are tested by inserting a test cell containing a QC check gas concentration into the optical measurement beam of the instrument. If possible, the normally used transmitter, receiver, and as appropriate, reflecting devices should be used during the test and the normal monitoring configuration of the instrument should be altered as little as possible to accommodate the test cell for the test. However, if permitted by the associated operation or instruction manual, an alternate local light source or an alternate optical path that does not include the normal atmospheric monitoring path may be used. The actual concentration of the QC check gas in the test cell must be selected to produce an effective concentration in the range specified earlier in this section. Generally, the QC test concentration measurement will be the sum of the atmospheric pollutant concentration and the QC test concentration. As such, the result must be corrected to remove the atmospheric concentration contribution. The corrected concentration is obtained by subtracting the average of the atmospheric concentrations measured by the open path instrument under test immediately before and immediately after the QC test from the QC check gas concentration measurement. If the difference between these before and after measurements is greater than 20 percent of the effective concentration of the test gas, discard the test result and repeat the test. If possible, open path monitors should be tested during periods when the atmospheric pollutant concentrations are relatively low and steady.

(d) Report the audit concentration of the QC gas and the corresponding measured concentration indicated by the monitor. The percent differences between these concentrations are used to assess the precision and bias of the monitoring data as described in sections 4.1.2 (precision) and 4.1.3 (bias) of this appendix.

3.1.2Quarterly performance evaluation for SO2,NO2, O3, or CO. Evaluate each primary monitor each monitoring quarter (or 90 day frequency) during which monitors are operated or a least once (if operated for less than one quarter). The quarterly performance evaluation (quarterly PE) must be performed by a qualified individual, group, or organization that is not part of the organization directly performing and accountable for the work being assessed. The person or entity performing the quarterly PE must not be involved with the generation of the routinely-collected ambient air monitoring data. A PSD monitoring organization can conduct the quarterly PE itself if it can meet this definition and has a management structure that, at a minimum, will allow for the separation of its routine sampling personnel from its auditing personnel by two levels of management. The quarterly PE also requires a set of equipment and standards independent from those used for routine calibrations or zero, span or precision checks.

3.1.2.1 The evaluation is made by challenging the monitor with audit gas standards of known concentration from at least three audit levels. One point must be within two to three times the method detection limit of the instruments within the PQAOs network, the second point will be less than or equal to the 99th percentile of the data at the site or the network of sites in the PQAO or the next highest audit concentration level. The third point can be around the primary NAAQS or the highest 3-year concentration at the site or the network of sites in the PQAO. An additional 4th level is encouraged for those PSD organizations that would like to confirm the monitor's linearity at the higher end of the operational range. In rare circ*mstances, there may be sites measuring concentrations above audit level 10. These sites should be identified to the PSD reviewing authority.

Audit levelConcentration range, ppm
O3SO2NO2CO
10.004-0.00590.0003-0.00290.0003-0.00290.020-0.059
20.006-0.0190.0030-0.00490.0030-0.00490.060-0.199
30.020-0.0390.0050-0.00790.0050-0.00790.200-0.899
40.040-0.0690.0080-0.01990.0080-0.01990.900-2.999
50.070-0.0890.0200-0.04990.0200-0.04993.000-7.999
60.090-0.1190.0500-0.09990.0500-0.09998.000-15.999
70.120-0.1390.1000-0.14990.1000-0.299916.000-30.999
80.140-0.1690.1500-0.25990.3000-0.499931.000-39.999
90.170-0.1890.2600-0.79990.5000-0.799940.000-49.999
100.190-0.2590.8000-1.0000.8000-1.00050.000-60.000

3.1.2.2 [Reserved]

3.1.2.3 The standards from which audit gas test concentrations are obtained must meet the specifications of section 2.6.1 of this appendix.

3.1.2.4 For point analyzers, the evaluation shall be carried out by allowing the monitor to analyze the audit gas test atmosphere in its normal sampling mode such that the test atmosphere passes through all filters, scrubbers, conditioners, and other sample inlet components used during normal ambient sampling and as much of the ambient air inlet system as is practicable.

3.1.2.5 Open-path monitors are evaluated by inserting a test cell containing the various audit gas concentrations into the optical measurement beam of the instrument. If possible, the normally used transmitter, receiver, and, as appropriate, reflecting devices should be used during the evaluation, and the normal monitoring configuration of the instrument should be modified as little as possible to accommodate the test cell for the evaluation. However, if permitted by the associated operation or instruction manual, an alternate local light source or an alternate optical path that does not include the normal atmospheric monitoring path may be used. The actual concentrations of the audit gas in the test cell must be selected to produce effective concentrations in the evaluation level ranges specified in this section of this appendix. Generally, each evaluation concentration measurement result will be the sum of the atmospheric pollutant concentration and the evaluation test concentration. As such, the result must be corrected to remove the atmospheric concentration contribution. The corrected concentration is obtained by subtracting the average of the atmospheric concentrations measured by the open-path instrument under test immediately before and immediately after the evaluation test (or preferably before and after each evaluation concentration level) from the evaluation concentration measurement. If the difference between the before and after measurements is greater than 20 percent of the effective concentration of the test gas standard, discard the test result for that concentration level and repeat the test for that level. If possible, open-path monitors should be evaluated during periods when the atmospheric pollutant concentrations are relatively low and steady. Also, if the open-path instrument is not installed in a permanent manner, the monitoring path length must be reverified to be within ±3 percent to validate the evaluation, since the monitoring path length is critical to the determination of the effective concentration.

3.1.2.6 Report both the evaluation concentrations (effective concentrations for open-path monitors) of the audit gases and the corresponding measured concentration (corrected concentrations, if applicable, for open-path monitors) indicated or produced by the monitor being tested. The percent differences between these concentrations are used to assess the quality of the monitoring data as described in section 4.1.1 of this appendix.

3.1.3National Performance Audit Program (NPAP). As stated in sections 1.1 and 2.4, PSD monitoring networks may be subject to the NPEP, which includes the NPAP. The NPAP is a performance evaluation which is a type of audit where quantitative data are collected independently in order to evaluate the proficiency of an analyst, monitoring instrument and laboratory. Due to the implementation approach used in this program, NPAP provides for a national independent assessment of performance with a consistent level of data quality. The NPAP should not be confused with the quarterly PE program described in section 3.1.2. The PSD organizations shall consult with the PSD reviewing authority or the EPA regarding whether the implementation of NPAP is required and the implementation options available. Details of the EPA NPAP can be found in reference 11 of this appendix. The program requirements include:

3.1.3.1 Performing audits on 100 percent of monitors and sites each year including monitors and sites that may be operated for less than 1 year. The PSD reviewing authority has the authority to require more frequent audits at sites they consider to be high priority.

3.1.3.2 Developing a delivery system that will allow for the audit concentration gasses to be introduced at the probe inlet where logistically feasible.

3.1.3.3 Using audit gases that are verified against the NIST standard reference methods or special review procedures and validated per the certification periods specified in Reference 4 of this appendix (EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards) for CO, SO2 , and NO2 and using O3 analyzers that are verified quarterly against a standard reference photometer.

3.1.3.4 The PSD PQAO may elect to self-implement NPAP. In these cases, the PSD reviewing authority will work with those PSD PQAOs to establish training and other technical requirements to establish comparability to federally implemented programs. In addition to meeting the requirements in sections 3.1.1.3 through 3.1.3.3, the PSD PQAO must:

(a) Ensure that the PSD audit system is equivalent to the EPA NPAP audit system and is an entirely separate set of equipment and standards from the equipment used for quarterly performance evaluations. If this system does not generate and analyze the audit concentrations, as the EPA NPAP system does, its equivalence to the EPA NPAP system must be proven to be as accurate under a full range of appropriate and varying conditions as described in section 3.1.3.6.

(b) Perform a whole system check by having the PSD audit system tested at an independent and qualified EPA lab, or equivalent.

(c) Evaluate the system with the EPA NPAP program through collocated auditing at an acceptable number of sites each year (at least one for a PSD network of five or less sites; at least two for a network with more than five sites).

(d) Incorporate the NPAP into the PSD PQAO's QAPP.

(e) Be subject to review by independent, EPA-trained personnel.

(f) Participate in initial and update training/certification sessions.

3.2PM2.5.

3.2.1Flow Rate Verification for PM2.5. A one-point flow rate verification check must be performed at least once every month (each verification minimally separated by 14 days) on each monitor used to measure PM2.5. The verification is made by checking the operational flow rate of the monitor. If the verification is made in conjunction with a flow rate adjustment, it must be made prior to such flow rate adjustment. For the standard procedure, use a flow rate transfer standard certified in accordance with section 2.6 of this appendix to check the monitor's normal flow rate. Care should be used in selecting and using the flow rate measurement device such that it does not alter the normal operating flow rate of the monitor. Flow rate verification results are to be reported to the PSD reviewing authority quarterly as described in section 5.1. Reporting these results to AQS is encouraged. The percent differences between the audit and measured flow rates are used to assess the bias of the monitoring data as described in section 4.2.2 of this appendix (using flow rates in lieu of concentrations).

3.2.2Semi-Annual Flow Rate Audit for PM2.5. Every 6 months, audit the flow rate of the PM2.5 particulate monitors. For short-term monitoring operations (those less than 1 year), the flow rate audits must occur at start up, at the midpoint, and near the completion of the monitoring project. The audit must be conducted by a trained technician other than the routine site operator. The audit is made by measuring the monitor's normal operating flow rate using a flow rate transfer standard certified in accordance with section 2.6 of this appendix. The flow rate standard used for auditing must not be the same flow rate standard used for verifications or to calibrate the monitor. However, both the calibration standard and the audit standard may be referenced to the same primary flow rate or volume standard. Care must be taken in auditing the flow rate to be certain that the flow measurement device does not alter the normal operating flow rate of the monitor. Report the audit flow rate of the transfer standard and the corresponding flow rate measured by the monitor. The percent differences between these flow rates are used to evaluate monitor performance.

3.2.3Collocated Sampling Procedures for PM2.5. A PSD PQAO must have at least one collocated monitor for each PSD monitoring network.

3.2.3.1 For each pair of collocated monitors, designate one sampler as the primary monitor whose concentrations will be used to report air quality for the site, and designate the other as the QC monitor. There can be only one primary monitor at a monitoring site for a given time period.

(a) If the primary monitor is a FRM, then the quality control monitor must be a FRM of the same method designation.

(b) If the primary monitor is a FEM, then the quality control monitor must be a FRM unless the PSD PQAO submits a waiver for this requirement, provides a specific reason why a FRM cannot be implemented, and the waiver is approved by the PSD reviewing authority. If the waiver is approved, then the quality control monitor must be the same method designation as the primary FEM monitor.

3.2.3.2 In addition, the collocated monitors should be deployed according to the following protocol:

(a) The collocated quality control monitor(s) should be deployed at sites with the highest predicted daily PM2.5 concentrations in the network. If the highest PM2.5 concentration site is impractical for collocation purposes, alternative sites approved by the PSD reviewing authority may be selected. If additional collocated sites are necessary, the PSD PQAO and the PSD reviewing authority should determine the appropriate location(s) based on data needs.

(b) The two collocated monitors must be within 4 meters of each other and at least 2 meters apart for flow rates greater than 200 liters/min or at least 1 meter apart for samplers having flow rates less than 200 liters/min to preclude airflow interference. A waiver allowing up to 10 meters horizontal distance and up to 3 meters vertical distance (inlet to inlet) between a primary and collocated quality control monitor may be approved by the PSD reviewing authority for sites at a neighborhood or larger scale of representation. This waiver may be approved during the QAPP review and approval process. Sampling and analytical methodologies must be the consistently implemented for both collocated samplers and for all other samplers in the network.

(c) Sample the collocated quality control monitor on a 6-day schedule for sites not requiring daily monitoring and on a 3-day schedule for any site requiring daily monitoring. Report the measurements from both primary and collocated quality control monitors at each collocated sampling site. The calculations for evaluating precision between the two collocated monitors are described in section 4.2.1 of this appendix.

3.2.4PM2.5 Performance Evaluation Program (PEP) Procedures. The PEP is an independent assessment used to estimate total measurement system bias. These evaluations will be performed under the NPEP as described in section 2.4 of this appendix or a comparable program. Performance evaluations will be performed annually within each PQAO. For PQAOs with less than or equal to five monitoring sites, five valid performance evaluation audits must be collected and reported each year. For PQAOs with greater than five monitoring sites, eight valid performance evaluation audits must be collected and reported each year. A valid performance evaluation audit means that both the primary monitor and PEP audit concentrations are valid and equal to or greater than 2 µg/m3. Siting of the PEP monitor must be consistent with section 3.2.3.4(c) of this appendix. However, any horizontal distance greater than 4 meters and any vertical distance greater than one meter must be reported to the EPA regional PEP coordinator. Additionally for every monitor designated as a primary monitor, a primary quality assurance organization must:

3.2.4.1 Have each method designation evaluated each year; and,

3.2.4.2 Have all FRM and FEM samplers subject to a PEP audit at least once every 6 years, which equates to approximately 15 percent of the monitoring sites audited each year.

3.2.4.3 Additional information concerning the PEP is contained in Reference 10 of this appendix. The calculations for evaluating bias between the primary monitor and the performance evaluation monitor for PM2.5 are described in section 4.2.5 of this appendix.

3.3PM10.

3.3.1Flow Rate Verification for PM10. A one-point flow rate verification check must be performed at least once every month (each verification minimally separated by 14 days) on each monitor used to measure PM10. The verification is made by checking the operational flow rate of the monitor. If the verification is made in conjunction with a flow rate adjustment, it must be made prior to such flow rate adjustment. For the standard procedure, use a flow rate transfer standard certified in accordance with section 2.6 of this appendix to check the monitor's normal flow rate. Care should be taken in selecting and using the flow rate measurement device such that it does not alter the normal operating flow rate of the monitor. The percent differences between the audit and measured flow rates are used to assess the bias of the monitoring data as described in section 4.2.2 of this appendix (using flow rates in lieu of concentrations).

3.3.2Semi-Annual Flow Rate Audit for PM10. Every 6 months, audit the flow rate of the PM10 particulate monitors. For short-term monitoring operations (those less than 1 year), the flow rate audits must occur at start up, at the midpoint, and near the completion of the monitoring project. Where possible, the EPA strongly encourages more frequent auditing. The audit must be conducted by a trained technician other than the routine site operator. The audit is made by measuring the monitor's normal operating flow rate using a flow rate transfer standard certified in accordance with section 2.6 of this appendix. The flow rate standard used for auditing must not be the same flow rate standard used for verifications or to calibrate the monitor. However, both the calibration standard and the audit standard may be referenced to the same primary flow rate or volume standard. Care must be taken in auditing the flow rate to be certain that the flow measurement device does not alter the normal operating flow rate of the monitor. Report the audit flow rate of the transfer standard and the corresponding flow rate measured by the monitor. The percent differences between these flow rates are used to evaluate monitor performance

3.3.3Collocated Sampling Procedures for Manual PM10. A PSD PQAO must have at least one collocated monitor for each PSD monitoring network.

3.3.3.1 For each pair of collocated monitors, designate one sampler as the primary monitor whose concentrations will be used to report air quality for the site, and designate the other as the quality control monitor.

3.3.3.2 In addition, the collocated monitors should be deployed according to the following protocol:

(a) The collocated quality control monitor(s) should be deployed at sites with the highest predicted daily PM10 concentrations in the network. If the highest PM10 concentration site is impractical for collocation purposes, alternative sites approved by the PSD reviewing authority may be selected.

(b) The two collocated monitors must be within 4 meters of each other and at least 2 meters apart for flow rates greater than 200 liters/min or at least 1 meter apart for samplers having flow rates less than 200 liters/min to preclude airflow interference. A waiver allowing up to 10 meters horizontal distance and up to 3 meters vertical distance (inlet to inlet) between a primary and collocated sampler may be approved by the PSD reviewing authority for sites at a neighborhood or larger scale of representation. This waiver may be approved during the QAPP review and approval process. Sampling and analytical methodologies must be the consistently implemented for both collocated samplers and for all other samplers in the network.

(c) Sample the collocated quality control monitor on a 6-day schedule or 3-day schedule for any site requiring daily monitoring. Report the measurements from both primary and collocated quality control monitors at each collocated sampling site. The calculations for evaluating precision between the two collocated monitors are described in section 4.2.1 of this appendix.

(d) In determining the number of collocated sites required for PM10, PSD monitoring networks for Pb-PM10 should be treated independently from networks for particulate matter (PM), even though the separate networks may share one or more common samplers. However, a single quality control monitor that meets the collocation requirements for Pb-PM10 and PM10 may serve as a collocated quality control monitor for both networks. Extreme care must be taken if using the filter from a quality control monitor for both PM10 and Pb analysis. PM10 filter weighing should occur prior to any Pb analysis.

3.4Pb.

3.4.1Flow Rate Verification for Pb. A one-point flow rate verification check must be performed at least once every month (each verification minimally separated by 14 days) on each monitor used to measure Pb. The verification is made by checking the operational flow rate of the monitor. If the verification is made in conjunction with a flow rate adjustment, it must be made prior to such flow rate adjustment. Use a flow rate transfer standard certified in accordance with section 2.6 of this appendix to check the monitor's normal flow rate. Care should be taken in selecting and using the flow rate measurement device such that it does not alter the normal operating flow rate of the monitor. The percent differences between the audit and measured flow rates are used to assess the bias of the monitoring data as described in section 4.2.2 of this appendix (using flow rates in lieu of concentrations).

3.4.2Semi-Annual Flow Rate Audit for Pb. Every 6 months, audit the flow rate of the Pb particulate monitors. For short-term monitoring operations (those less than 1 year), the flow rate audits must occur at start up, at the midpoint, and near the completion of the monitoring project. Where possible, the EPA strongly encourages more frequent auditing. The audit must be conducted by a trained technician other than the routine site operator. The audit is made by measuring the monitor's normal operating flow rate using a flow rate transfer standard certified in accordance with section 2.6 of this appendix. The flow rate standard used for auditing must not be the same flow rate standard used to in verifications or to calibrate the monitor. However, both the calibration standard and the audit standard may be referenced to the same primary flow rate or volume standard. Great care must be taken in auditing the flow rate to be certain that the flow measurement device does not alter the normal operating flow rate of the monitor. Report the audit flow rate of the transfer standard and the corresponding flow rate measured by the monitor. The percent differences between these flow rates are used to evaluate monitor performance.

3.4.3Collocated Sampling for Pb. A PSD PQAO must have at least one collocated monitor for each PSD monitoring network.

3.4.3.1 For each pair of collocated monitors, designate one sampler as the primary monitor whose concentrations will be used to report air quality for the site, and designate the other as the quality control monitor.

3.4.3.2 In addition, the collocated monitors should be deployed according to the following protocol:

(a) The collocated quality control monitor(s) should be deployed at sites with the highest predicted daily Pb concentrations in the network. If the highest Pb concentration site is impractical for collocation purposes, alternative sites approved by the PSD reviewing authority may be selected.

(b) The two collocated monitors must be within 4 meters of each other and at least 2 meters apart for flow rates greater than 200 liters/min or at least 1 meter apart for samplers having flow rates less than 200 liters/min to preclude airflow interference. A waiver allowing up to 10 meters horizontal distance and up to 3 meters vertical distance (inlet to inlet) between a primary and collocated sampler may be approved by the PSD reviewing authority for sites at a neighborhood or larger scale of representation. This waiver may be approved during the QAPP review and approval process. Sampling and analytical methodologies must be the consistently implemented for both collocated samplers and all other samplers in the network.

(c) Sample the collocated quality control monitor on a 6-day schedule if daily monitoring is not required or 3-day schedule for any site requiring daily monitoring. Report the measurements from both primary and collocated quality control monitors at each collocated sampling site. The calculations for evaluating precision between the two collocated monitors are described in section 4.2.1 of this appendix.

(d) In determining the number of collocated sites required for Pb-PM10, PSD monitoring networks for PM10 should be treated independently from networks for Pb-PM10, even though the separate networks may share one or more common samplers. However, a single quality control monitor that meets the collocation requirements for Pb-PM10 and PM10 may serve as a collocated quality control monitor for both networks. Extreme care must be taken if using a using the filter from a quality control monitor for both PM10 and Pb analysis. The PM10 filter weighing should occur prior to any Pb analysis.

3.4.4Pb Analysis Audits. Each calendar quarter, audit the Pb reference or equivalent method analytical procedure using filters containing a known quantity of Pb. These audit filters are prepared by depositing a Pb standard on unexposed filters and allowing them to dry thoroughly. The audit samples must be prepared using batches of reagents different from those used to calibrate the Pb analytical equipment being audited. Prepare audit samples in the following concentration ranges:

RangeEquivalent ambient
Pb concentration, µg/m3
130-100% of Pb NAAQS.
2200-300% of Pb NAAQS.

(a) Audit samples must be extracted using the same extraction procedure used for exposed filters.

(b) Analyze three audit samples in each of the two ranges each quarter samples are analyzed. The audit sample analyses shall be distributed as much as possible over the entire calendar quarter.

(c) Report the audit concentrations (in µg Pb/filter or strip) and the corresponding measured concentrations (in µg Pb/filter or strip) using AQS unit code 077 (if reporting to AQS). The percent differences between the concentrations are used to calculate analytical accuracy as described in section 4.2.5 of this appendix.

3.4.5Pb Performance Evaluation Program (PEP) Procedures. As stated in sections 1.1 and 2.4, PSD monitoring networks may be subject to the NPEP, which includes the Pb PEP. The PSD monitoring organizations shall consult with the PSD reviewing authority or the EPA regarding whether the implementation of Pb-PEP is required and the implementation options available for the Pb-PEP. The PEP is an independent assessment used to estimate total measurement system bias. Each year, one PE audit must be performed at one Pb site in each PSD PQAO network that has less than or equal to five sites and two audits for PSD PQAO networks with greater than five sites. In addition, each year, four collocated samples from PSD PQAO networks with less than or equal to five sites and six collocated samples from PSD PQAO networks with greater than five sites must be sent to an independent laboratory for analysis. The calculations for evaluating bias between the primary monitor and the PE monitor for Pb are described in section 4.2.4 of this appendix.

4. Calculations for Data Quality Assessments

(a) Calculations of measurement uncertainty are carried out by PSD PQAO according to the following procedures. The PSD PQAOs should report the data for all appropriate measurement quality checks as specified in this appendix even though they may elect to perform some or all of the calculations in this section on their own.

(b) At low concentrations, agreement between the measurements of collocated samplers, expressed as relative percent difference or percent difference, may be relatively poor. For this reason, collocated measurement pairs will be selected for use in the precision and bias calculations only when both measurements are equal to or above the following limits:

(1) Pb: 0.002 µg/m3 (Methods approved after 3/04/2010, with exception of manual equivalent method EQLA-0813-803).

(2) Pb: 0.02 µg/m3 (Methods approved before 3/04/2010, and manual equivalent method EQLA-0813-803).

(3) PM10 (Hi-Vol): 15 µg/m3.

(4) PM10 (Lo-Vol): 3 µg/m3.

(5) PM2.5: 3 µg/m3.

(c) The PM2.5 3 µg/m3 limit for the PM2.5−PEP may be superseded by mutual agreement between the PSD PQAO and the PSD reviewing authority as specified in section 3.2.4 of the appendix and detailed in the approved QAPP.

4.1Statistics for the Assessment of QC Checks for SO2, NO2, O3and CO.

4.1.1Percent Difference. Many of the measurement quality checks start with a comparison of an audit concentration or value (flow-rate) to the concentration/value measured by the monitor and use percent difference as the comparison statistic as described in equation 1 of this section. For each single point check, calculate the percent difference,di, as follows:


Minnesota marijuana law takes dual approach to testing (21)

wheremeas is the concentration indicated by the PQAO's instrument andaudit is the audit concentration of the standard used in the QC check being measured.

4.1.2Precision Estimate. The precision estimate is used to assess the one-point QC checks for SO2, NO2, O3, or CO described in section 3.1.1 of this appendix. The precision estimator is the coefficient of variation upper bound and is calculated using equation 2 of this section:


Minnesota marijuana law takes dual approach to testing (22)

wheren is the number of single point checks being aggregated; X20.1,n-1 is the 10th percentile of a chi-squared distribution with n-1 degrees of freedom.

4.1.3Bias Estimate. The bias estimate is calculated using the one-point QC checks for SO2, NO2, O3, or CO described in section 3.1.1 of this appendix. The bias estimator is an upper bound on the mean absolute value of the percent differences as described in equation 3 of this section:


Minnesota marijuana law takes dual approach to testing (23)

wheren is the number of single point checks being aggregated; t0.95,n-1 is the 95th quantile of a t-distribution with n-1 degrees of freedom; the quantityAB is the mean of the absolute values of thedi′s and is calculated using equation 4 of this section:


Minnesota marijuana law takes dual approach to testing (24)

and the quantityAS is the standard deviation of the absolute value of thedi′s and is calculated using equation 5 of this section:


Minnesota marijuana law takes dual approach to testing (25)

4.1.3.1Assigning a sign (positive/negative) to the bias estimate. Since the bias statistic as calculated in equation 3 of this appendix uses absolute values, it does not have a tendency (negative or positive bias) associated with it. A sign will be designated by rank ordering the percent differences of the QC check samples from a given site for a particular assessment interval.

4.1.3.2 Calculate the 25th and 75th percentiles of the percent differences for each site. The absolute bias upper bound should be flagged as positive if both percentiles are positive and negative if both percentiles are negative. The absolute bias upper bound would not be flagged if the 25th and 75th percentiles are of different signs.

4.2Statistics for the Assessment of PM10,PM2.5, and Pb.

4.2.1Collocated Quality Control Sampler Precision Estimate for PM10, PM2.5, and Pb . Precision is estimated via duplicate measurements from collocated samplers. It is recommended that the precision be aggregated at the PQAO level quarterly, annually, and at the 3-year level. The data pair would only be considered valid if both concentrations are greater than or equal to the minimum values specified in section 4(c) of this appendix. For each collocated data pair, calculateti, using equation 6 to this appendix:


Minnesota marijuana law takes dual approach to testing (26)

WhereXi is the concentration from the primary sampler andYi is the concentration value from the audit sampler. The coefficient of variation upper bound is calculated using equation 7 to this appendix:


Minnesota marijuana law takes dual approach to testing (27)

Wherek is the number of valid data pairs being aggregated, and X20.1,k-1 is the 10th percentile of a chi-squared distribution with k-1 degrees of freedom. The factor of 2 in the denominator adjusts for the fact that eachti is calculated from two values with error.

4.2.2One-Point Flow Rate Verification Bias Estimate for PM10, PM2.5and Pb. For each one-point flow rate verification, calculate the percent difference in volume using equation 1 of this appendix wheremeas is the value indicated by the sampler's volume measurement andaudit is the actual volume indicated by the auditing flow meter. The absolute volume bias upper bound is then calculated using equation 3, wheren is the number of flow rate audits being aggregated; t0.95,n-1 is the 95th quantile of a t-distribution with n-1 degrees of freedom, the quantityAB is the mean of the absolute values of thedi′s and is calculated using equation 4 of this appendix, and the quantityAS in equation 3 of this appendix is the standard deviation of the absolute values if thedi′s and is calculated using equation 5 of this appendix.

4.2.3Semi-Annual Flow Rate Audit Bias Estimate for PM10, PM2.5and Pb. Use the same procedure described in section 4.2.2 for the evaluation of flow rate audits.

4.2.4Performance Evaluation Programs Bias Estimate for Pb. The Pb bias estimate is calculated using the paired routine and the PEP monitor as described in section 3.4.5. Use the same procedures as described in section 4.1.3 of this appendix.

4.2.5Performance Evaluation Programs Bias Estimate for PM2.5 . The bias estimate is calculated using the PEP audits described in section 3.2.4. of this appendix. The bias estimator is based on, si , the absolute difference in concentrations divided by the square root of the PEP concentration.


Minnesota marijuana law takes dual approach to testing (28)

4.2.6Pb Analysis Audit Bias Estimate. The bias estimate is calculated using the analysis audit data described in section 3.4.4. Use the same bias estimate procedure as described in section 4.1.3 of this appendix.

5. Reporting Requirements

5.1.Quarterly Reports. For each quarter, each PSD PQAO shall report to the PSD reviewing authority (and AQS if required by the PSD reviewing authority) the results of all valid measurement quality checks it has carried out during the quarter. The quarterly reports must be submitted consistent with the data reporting requirements specified for air quality data as set forth in 40 CFR 58.16 and pertain to PSD monitoring.

6. References

(1) American National Standard Institute—Quality Management Systems For Environmental Information And Technology Programs—Requirements With Guidance For Use. ASQ/ANSI E4–2014. February 2014. Available from ANSI Webstorehttps://webstore.ansi.org/.

(2) EPA Requirements for Quality Management Plans. EPA QA/R-2. EPA/240/B-01/002. March 2001, Reissue May 2006. Office of Environmental Information, Washington, DC 20460.http://www.epa.gov/quality/agency-wide-quality-system-documents.

(3) EPA Requirements for Quality Assurance Project Plans for Environmental Data Operations. EPA QA/R-5. EPA/240/B-01/003. March 2001, Reissue May 2006. Office of Environmental Information, Washington, DC 20460.http://www.epa.gov/quality/agency-wide-quality-system-documents.

(4) EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards. EPA–600/R–12/531. May, 2012. Available from U.S. Environmental Protection Agency, National Risk Management Research Laboratory, Research Triangle Park NC 27711.https://www.epa.gov/nscep.

(5) Guidance for the Data Quality Objectives Process. EPA QA/G-4. EPA/240/B-06/001. February, 2006. Office of Environmental Information, Washington, DC 20460.http://www.epa.gov/quality/agency-wide-quality-system-documents.

(6) List of Designated Reference and Equivalent Methods. Available from U.S. Environmental Protection Agency, Center for Environmental Measurements and Modeling, Air Methods and Characterization Division, MD–D205–03, Research Triangle Park, NC 27711.https://www.epa.gov/amtic/air-monitoring-methods-criteria-pollutants.

(7) Transfer Standards for the Calibration of Ambient Air Monitoring Analyzers for Ozone. EPA–454/B–13–004 U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, October, 2013.https://www.epa.gov/sites/default/files/2020-09/documents/ozonetransferstandardguidance.pdf.

(8) Paur, R.J. and F.F. McElroy. Technical Assistance Document for the Calibration of Ambient Ozone Monitors. EPA-600/4-79-057. U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, September, 1979.http://www.epa.gov/ttn/amtic/cpreldoc.html.

(9) Quality Assurance Handbook for Air Pollution Measurement Systems, Volume 1—A Field Guide to Environmental Quality Assurance. EPA–600/R–94/038a. April 1994. Available from U.S. Environmental Protection Agency, ORD Publications Office, Center for Environmental Research Information (CERI), 26 W. Martin Luther King Drive, Cincinnati, OH 45268.https://www.epa.gov/amtic/ambient-air-monitoring-quality-assurance#documents.

(10) Quality Assurance Handbook for Air Pollution Measurement Systems, Volume II: Ambient Air Quality Monitoring Program Quality System Development. EPA–454/B–13–003.https://www.epa.gov/amtic/ambient-air-monitoring-quality-assurance#documents.

(11) National Performance Evaluation Program Standard Operating Procedures.https://www.epa.gov/amtic/ambient-air-monitoring-quality-assurance#npep.

Table B–1 to Section 6 of Appendix B- Minimum Data Assessment Requirements for NAAQS Related Criteria Pollutant PSD Monitors
MethodAssessment methodCoverageMinimum frequencyParameters reportedAQS Assessment type
1 Effective concentration for open path analyzers.
2 Corrected concentration, if applicable for open path analyzers.
3 NPAP, PM2.5 , PEP, and Pb-PEP must be implemented if data is used for NAAQS decisions otherwise implementation is at PSD reviewing authority discretion.
4 Both primary and collocated sampler values are reported as raw data
5 A maximum number of days should be between these checks to ensure the checks are routinely conducted over time and to limit data impacts resulting from a failed check.
Gaseous Methods (CO, NO2 , SO2 , O3):
One-Point QC for SO2 , NO2 , O3 , COResponse check at concentration 0.005–0.08 ppm SO2 , NO2 , O3 , & 0.5 and 5 ppm COEach analyzerOnce per 2 weeks5Audit concentration1 and measured concentration2One-Point QC.
Quarterly performance evaluation for SO2 , NO2 , O3 , COSee section 3.1.2 of this appendixEach analyzerOnce per quarter5Audit concentration1 and measured concentration2 for each levelAnnual PE.
NPAP for SO2 , NO2 , O3 , CO3Independent AuditEach primary monitorOnce per yearAudit concentration1 and measured concentration2 for each levelNPAP.
Particulate Methods:
Collocated sampling PM10 , PM2.5 , PbCollocated samplers1 per PSD Network per pollutantEvery 6 days or every 3 days if daily monitoring requiredPrimary sampler concentration and duplicate sampler concentration4No Transaction reported as raw data.
Flow rate verification PM10 , PM2.5 , PbCheck of sampler flow rateEach samplerOnce every month5Audit flow rate and measured flow rate indicated by the samplerFlow Rate Verification.
Semi-annual flow rate audit PM10 , PM2.5 , PbCheck of sampler flow rate using independent standardEach samplerOnce every 6 months or beginning, middle and end of monitoring5Audit flow rate and measured flow rate indicated by the samplerSemi Annual Flow Rate Audit.
Pb analysis audits Pb-TSP, Pb-PM10Check of analytical system with Pb audit strips/filtersAnalyticalEach quarter5Measured value and audit value (ug Pb/filter) using AQS unit code 077 for parameters: 14129—Pb (TSP) LC FRM/FEM 85129—Pb (TSP) LC Non-FRM/FEM.Pb Analysis Audits.
Performance Evaluation Program PM2.53Collocated samplers(1) 5 valid audits for PQAOs with <= 5 sites. (2) 8 valid audits for PQAOs with > 5 sites. (3) All samplers in 6 yearsOver all 4 quarters5Primary sampler concentration and performance evaluation sampler concentrationPEP.
Performance Evaluation Program Pb3Collocated samplers(1) 1 valid audit and 4 collocated samples for PQAOs, with <=5 sites. (2) 2 valid audits and 6 collocated samples for PQAOs with >5 sites.Over all 4 quarters5Primary sampler concentration and performance evaluation sampler concentration. Primary sampler concentration and duplicate sampler concentrationPEP.

Appendix C to Part 58—Ambient Air Quality Monitoring Methodology

* * * *

2.0 SLAMS Ambient Air Monitoring Network

2.1 Except as otherwise provided in this appendix, a criteria pollutant monitoring method used for making NAAQS decisions at a SLAMS site must be a reference or equivalent method as defined in§50.1 of this chapter.

2.1.1 Any NO2 FRM or FEM used for making primary NAAQS decisions must be capable of providing hourly averaged concentration data.

2.2 PM10 , PM2.5 , or PM10–2.5 continuous FEMs with existing valid designations may be calibrated using network data from collocated FRM and continuous FEM data under the following provisions:

2.2.1 Data to demonstrate a calibration may include valid data from State, local, or Tribal air agencies or data collected by instrument manufacturers in accordance with 40 CFR 53.35 or other data approved by the Administrator.

2.2.2 A request to update a designated methods calibration may be initiated by the instrument manufacturer of record or the EPA Administrator. State, local, Tribal, and multijusistincional organizations of these entities may work with an instrument manufacture to update a designated method calibration.

2.2.3 Requests for approval of an updated PM10 , PM2.5 , or PM10–2.5 continuous FEM calibration must meet the general submittal requirements of section 2.7 of this appendix.

2.2.4 Data included in the request should represent a subset of representative locations where the method is operational. For cases with a small number of collocated FRMs and continuous FEMs sites, an updated candidate calibration may be limited to the sites where both methods are in use.

2.2.5 Data included in a candidate method updated calibration may include a subset of sites where there is a large grouping of sites in one part of the country such that the updated calibration would be representative of the country as a whole.

2.2.6 Improvements should be national in scope and ideally implemented through a firmware change.

2.2.7 The goal of a change to a methods calibration is to increase the number of sites meeting measurements quality objectives of the method as identified in section 2.3.1.1 of appendix A to this part.

2.2.8 For meeting measurement quality objectives (MQOs), the primary objective is to meet the bias goal as this statistic will likely have the most influence on improving the resultant data collected.

2.2.9 Precision data are to be included, but so long as precision data are at least as good as existing network data or meet the MQO referenced in section 2.2.8 of this appendix, no further work is necessary with precision.

2.2.10 Data available to use may include routine primary and collocated data.

2.2.11 Audit data may be useful to confirm the performance of a candidate updated calibration but should not be used as the basis of the calibration to keep the independence of the audit data.

2.2.12 Data utilized as the basis of the updated calibration may be obtained by accessing EPA's AQS database or future analogous EPA database.

2.2.13 Years of data to use in a candidate method calibration should include two recent years where we are past the certification period for the previous year's data, which is May 1 of each year.

2.2.14 Data from additional years is to be used to test an updated calibration such that the calibration is independent of the test years of interest. Data from these additional years need to minimally demonstrate that a larger number of sites are expected to meet bias MQO especially at sites near the level of the NAAQS for the PM indicator of interest.

2.2.15 Outliers may be excluded using routine outlier tests.

2.2.16 The range of data used in a calibration may include all data available or alternatively use data in the range from the lowest measured data available up to 125% of the 24-hour NAAQS for the PM indicator of interest.

2.2.17 Other improvements to a PM continuous method may be included as part of a recommended update so long as appropriate testing is conducted with input from EPA's Office of Research and Development (ORD) Reference and Equivalent (R&E) Methods Designation program.

2.2.18 EPA encourages early communication by instrument manufacturers considering an update to a PM method. Instrument companies should initiate such dialogue by contacting EPA's ORD R&E Methods Designation program. The contact information for this can be found at 40 CFR 53.4.

2.2.19 Manufacturers interested in improving instrument's performance through an updated factory calibration must submit a written modification request to EPA with supporting rationale. Because the testing requirements and acceptance criteria of any field and/or lab tests can depend upon the nature and extent of the intended modification, applicants should contact EPA's R&E Methods Designation program for guidance prior to development of the modification request.

2.3 Any manual method or analyzer purchased prior to cancellation of its reference or equivalent method designation under§53.11 or§53.16 of this chapter may be used at a SLAMS site following cancellation for a reasonable period of time to be determined by the Administrator.

2.4 [Reserved]

2.4.1 [Reserved]

2.4.2 The monitoring agency wishing to use an ARM must develop and implement appropriate quality assurance procedures for the method. Additionally, the following procedures are required for the method:

2.4.2.1 The ARM must be consistently operated throughout the network. Exceptions to a consistent operation must be approved according to section 2.8 of this appendix;

2.4.2.2 The ARM must be operated on an hourly sampling frequency capable of providing data suitable for aggregation into daily 24-hour average measurements;

2.4.2.3 The ARM must use an inlet and separation device, as needed, that are already approved in either the reference method identified inappendix L to part 50 of this chapter or under part 53 of this chapter as approved for use on a PM2.5 reference or equivalent method. The only exceptions to this requirement are those methods that by their inherent measurement principle may not need an inlet or separation device that segregates the aerosol; and

2.4.2.4 The ARM must be capable of providing for flow audits, unless by its inherent measurement principle, measured flow is not required. These flow audits are to be performed on the frequency identified inappendix A to this part.

2.4.2.5 If data transformations are used, they must be described in the monitoring agencies Quality Assurance Project plan (or addendum to QAPP). The QAPP shall describe how often (e.g., quarterly, yearly) and under what provisions the data transformation will be updated. For example, not meeting the data quality objectives for a site over a season or year may be cause for recalculating a data transformation, but by itself would not be cause for invalidating the data. Data transformations must be applied prospectively, i.e., in real-time or near real-time, to the data output from the PM2.5 continuous method. See reference 7 of this appendix.

2.4.3 The monitoring agency wishing to use the method must develop and implement appropriate procedures for assessing and reporting the precision and accuracy of the method comparable to the procedures set forth inappendix A of this part for designated reference and equivalent methods.

2.4.4 Assessments of data quality shall follow the same frequencies and calculations as required under section 3 ofappendix A to this part with the following exceptions:

2.4.4.1 Collocation of ARM with FRM/FEM samplers must be maintained at a minimum of 30 percent of the required SLAMS sites with a minimum of 1 per network;

2.4.4.2 All collocated FRM/FEM samplers must maintain a sample frequency of at least 1 in 6 sample days;

2.4.4.3 Collocated FRM/FEM samplers shall be located at the design value site, with the required FRM/FEM samplers deployed among the largest MSA/CSA in the network, until all required FRM/FEM are deployed; and

2.4.4.4 Data from collocated FRM/FEM are to be substituted for any calendar quarter that an ARM method has incomplete data.

2.4.4.5 Collocation with an ARM under this part for purposes of determining the coefficient of variation of the method shall be conducted at a minimum of 7.5 percent of the sites with a minimum of 1 per network. This is consistent with the requirements inappendix A to this part for one-half of the required collocation of FRM/FEM (15 percent) to be collocated with the same method.

2.4.4.6 Assessments of bias with an independent audit of the total measurement system shall be conducted with the same frequency as an FEM as identified inappendix A to this part.

2.4.5 Request for approval of a candidate ARM, that is not already approved in another agency's network under this section, must meet the general submittal requirements of section 2.7 of this appendix. Requests for approval under this section when an ARM is already approved in another agency's network are to be submitted to the EPA Regional Administrator. Requests for approval under section 2.4 of this appendix must include the following requirements:

2.4.5.1 A clear and unique description of the site(s) at which the candidate ARM will be used and tested, and a description of the nature or character of the site and the particulate matter that is expected to occur there.

2.4.5.2 A detailed description of the method and the nature of the sampler or analyzer upon which it is based.

2.4.5.3 A brief statement of the reason or rationale for requesting the approval.

2.4.5.4 A detailed description of the quality assurance procedures that have been developed and that will be implemented for the method.

2.4.5.5 A detailed description of the procedures for assessing the precision and accuracy of the method that will be implemented for reporting to AQS.

2.4.5.6 Test results from the comparability tests as required in section 2.4.1 through 2.4.1.4 of this appendix.

2.4.5.7 Such further supplemental information as may be necessary or helpful to support the required statements and test results.

2.4.6 Within 120 days after receiving a request for approval of the use of an ARM at a particular site or network of sites under section 2.4 of this appendix, the Administrator will approve or disapprove the method by letter to the person or agency requesting such approval. When appropriate for methods that are already approved in another SLAMS network, the EPA Regional Administrator has approval/disapproval authority. In either instance, additional information may be requested to assist with the decision.

2.5 [Reserved]

2.6 Use of Methods With Higher, Nonconforming Ranges in Certain Geographical Areas.

2.6.1 [Reserved]

2.6.2 An analyzer may be used (indefinitely) on a range which extends to concentrations higher than two times the upper limit specified in table B-1 of part 53 of this chapter if:

2.6.2.1 The analyzer has more than one selectable range and has been designated as a reference or equivalent method on at least one of its ranges, or has been approved for use under section 2.5 (which applies to analyzers purchased before February 18, 1975);

2.6.2.2 The pollutant intended to be measured with the analyzer is likely to occur in concentrations more than two times the upper range limit specified in table B-1 of part 53 of this chapter in the geographical area in which use of the analyzer is proposed; and

2.6.2.3 The Administrator determines that the resolution of the range or ranges for which approval is sought is adequate for its intended use. For purposes of this section (2.6), “resolution” means the ability of the analyzer to detect small changes in concentration.

2.6.3 Requests for approval under section 2.6.2 of this appendix must meet the submittal requirements of section 2.7. Except as provided in section 2.7.3 of this appendix, each request must contain the information specified in section 2.7.2 in addition to the following:

2.6.3.1 The range or ranges proposed to be used;

2.6.3.2 Test data, records, calculations, and test results as specified in section 2.7.2.2 of this appendix for each range proposed to be used;

2.6.3.3 An identification and description of the geographical area in which use of the analyzer is proposed;

2.6.3.4 Data or other information demonstrating that the pollutant intended to be measured with the analyzer is likely to occur in concentrations more than two times the upper range limit specified in table B-1 of part 53 of this chapter in the geographical area in which use of the analyzer is proposed; and

2.6.3.5 Test data or other information demonstrating the resolution of each proposed range that is broader than that permitted by section 2.5 of this appendix.

2.6.4 Any person who has obtained approval of a request under this section (2.6.2) shall assure that the analyzer for which approval was obtained is used only in the geographical area identified in the request and only while operated in the range or ranges specified in the request.

2.7 Requests for Approval; Withdrawal of Approval.

2.7.1 Requests for approval under sections 2.2, 2.4, 2.6.2, or 2.8 of this appendix must be submitted to: Director, Center for Environmental Measurement and Modeling, Reference and Equivalent Methods Designation Program (MD–D205–03), U.S. Environmental Protection Agency, P.O. Box 12055, Research Triangle Park, North Carolina 27711.

2.7.2 Except as provided in section 2.7.3 of this appendix, each request must contain:

2.7.2.1 A statement identifying the analyzer (e.g., by serial number) and the method of which the analyzer is representative (e.g., by manufacturer and model number); and

2.7.2.2 Test data, records, calculations, and test results for the analyzer (or the method of which the analyzer is representative) as specified in subpart B, subpart C, or both (as applicable) of part 53 of this chapter.

2.7.3 A request may concern more than one analyzer or geographical area and may incorporate by reference any data or other information known to EPA from one or more of the following:

2.7.3.1 An application for a reference or equivalent method determination submitted to EPA for the method of which the analyzer is representative, or testing conducted by the applicant or by EPA in connection with such an application;

2.7.3.2 Testing of the method of which the analyzer is representative at the initiative of the Administrator under§53.7 of this chapter; or

2.7.3.3 A previous or concurrent request for approval submitted to EPA under this section (2.7).

2.7.4 To the extent that such incorporation by reference provides data or information required by this section (2.7) or by sections 2.4, 2.5, or 2.6 of this appendix, independent data or duplicative information need not be submitted.

2.7.5 After receiving a request under this section (2.7), the Administrator may request such additional testing or information or conduct such tests as may be necessary in his judgment for a decision on the request.

2.7.6 If the Administrator determines, on the basis of any available information, that any of the determinations or statements on which approval of a request under this section was based are invalid or no longer valid, or that the requirements of section 2.4, 2.5, or 2.6, as applicable, have not been met, he/she may withdraw the approval after affording the person who obtained the approval an opportunity to submit information and arguments opposing such action.

2.8 Modifications of Methods by Users.

2.8.1 Except as otherwise provided in this section, no reference method, equivalent method, or ARM may be used in a SLAMS network if it has been modified in a manner that could significantly alter the performance characteristics of the method without prior approval by the Administrator. For purposes of this section, “alternative method” means an analyzer, the use of which has been approved under section 2.4, 2.5, or 2.6 of this appendix or some combination thereof.

2.8.2 Requests for approval under this section (2.8) must meet the submittal requirements of sections 2.7.1 and 2.7.2.1 of this appendix.

2.8.3 Each request submitted under this section (2.8) must include:

2.8.3.1 A description, in such detail as may be appropriate, of the desired modification;

2.8.3.2 A brief statement of the purpose(s) of the modification, including any reasons for considering it necessary or advantageous;

2.8.3.3 A brief statement of belief concerning the extent to which the modification will or may affect the performance characteristics of the method; and

2.8.3.4 Such further information as may be necessary to explain and support the statements required by sections 2.8.3.2 and 2.8.3.3.

2.8.4 The Administrator will approve or disapprove the modification by letter to the person or agency requesting such approval within 75 days after receiving a request for approval under this section and any further information that the applicant may be asked to provide.

2.8.5 A temporary modification that could alter the performance characteristics of a reference, equivalent, or ARM may be made without prior approval under this section if the method is not functioning or is malfunctioning, provided that parts necessary for repair in accordance with the applicable operation manual cannot be obtained within 45 days. Unless such temporary modification is later approved under section 2.8.4 of this appendix, the temporarily modified method shall be repaired in accordance with the applicable operation manual as quickly as practicable but in no event later than 4 months after the temporary modification was made, unless an extension of time is granted by the Administrator. Unless and until the temporary modification is approved, air quality data obtained with the method as temporarily modified must be clearly identified as such when submitted in accordance with§58.16 and must be accompanied by a report containing the information specified in section 2.8.3 of this appendix. A request that the Administrator approve a temporary modification may be submitted in accordance with sections 2.8.1 through 2.8.4 of this appendix. In such cases the request will be considered as if a request for prior approval had been made.

2.9 Use of IMPROVE Samplers at a SLAMS Site. “IMPROVE” samplers may be used in SLAMS for monitoring of regional background and regional transport concentrations of fine particulate matter. The IMPROVE samplers were developed for use in the Interagency Monitoring of Protected Visual Environments (IMPROVE) network to characterize all of the major components and many trace constituents of the particulate matter that impair visibility in Federal Class I Areas. Descriptions of the IMPROVE samplers and the data they collect are available in references 4, 5, and 6 of this appendix.

2.10Use of Pb-PM10at SLAMS Sites.

2.10.1 The EPA Regional Administrator may approve the use of a Pb-PM10 FRM or Pb-PM10 FEM sampler in lieu of a Pb-TSP sampler as part of the network plan required under part 58.10(a)(4) in the following cases.

2.10.1.1 Pb-PM10 samplers can be approved for use at the non-source-oriented sites required under paragraph 4.5(b) of Appendix D to part 58 if there is no existing monitoring data indicating that the maximum arithmetic 3-month mean Pb concentration (either Pb-TSP or Pb-PM10) at the site was equal to or greater than 0.10 micrograms per cubic meter during the previous 3 years.

2.10.1.2 Pb-PM10 samplers can be approved for use at source-oriented sites required under paragraph 4.5(a) if the monitoring agency can demonstrate (through modeling or historic monitoring data from the last 3 years) that Pb concentrations (either Pb-TSP or Pb-PM10) will not equal or exceed 0.10 micrograms per cubic meter on an arithmetic 3-month mean and the source is expected to emit a substantial majority of its Pb in the fraction of PM with an aerodynamic diameter of less than or equal to 10 micrometers.

2.10.2 The approval of a Pb-PM10 sampler in lieu of a Pb-TSP sampler as allowed for in paragraph 2.10.1 above will be revoked if measured Pb-PM10 concentrations equal or exceed 0.10 micrograms per cubic meter on an arithmetic 3-month mean. Monitoring agencies will have up to 6 months from the end of the 3-month period in which the arithmetic 3-month Pb-PM10 mean concentration equaled or exceeded 0.10 micrograms per cubic meter to install and begin operation of a Pb-TSP sampler at the site.

Appendix D to Part 58—Network Design Criteria for Ambient Air Quality Monitoring

1. Monitoring Objectives and Spatial Scales

The purpose of this appendix is to describe monitoring objectives and general criteria to be applied in establishing the required SLAMS ambient air quality monitoring stations and for choosing general locations for additional monitoring sites. This appendix also describes specific requirements for the number and location of FRM and FEM sites for specific pollutants, NCore multipollutant sites, PM10 mass sites, PM2.5 mass sites, chemically-speciated PM2.5 sites, and O3 precursor measurements sites (PAMS). These criteria will be used by EPA in evaluating the adequacy of the air pollutant monitoring networks.

1.1 (b) Support compliance with ambient air quality standards and emissions strategy development. Data from FRM and FEM monitors for NAAQS pollutants will be used for comparing an area's air pollution levels against the NAAQS. Data from monitors of various types can be used in the development of attainment and maintenance plans. SLAMS, and especially NCore station data, will be used to evaluate the regional air quality models used in developing emission strategies, and to track trends in air pollution abatement control measures' impact on improving air quality. In monitoring locations near major air pollution sources, source-oriented monitoring data can provide insight into how well industrial sources are controlling their pollutant emissions.

* * * * *

4.7.1 (a) State and where applicable, local, agencies must operate the minimum number of required PM2.5 SLAMS sites listed in table D–5 to this appendix. The NCore sites are expected to complement the PM2.5 data collection that takes place at non-NCore SLAMS sites, and both types of sites can be used to meet the minimum PM2.5 network requirements. For many State and local networks, the total number of PM2.5 sites needed to support the basic monitoring objectives of providing air pollution data to the general public in a timely manner, support compliance with ambient air quality standards and emission strategy development, and support for air pollution research studies will include more sites than the minimum numbers required in table D–5 to this appendix. Deviations from these PM2.5 monitoring requirements must be approved by the EPA Regional Administrator.

* * * * *

(b)(3) For areas with additional required SLAMS, a monitoring station is to be sited in an at-risk community with poor air quality, particularly where there are anticipated effects from sources in the area (e.g., a major industrial area, point source(s), port, rail yard, airport, or other transportation facility or corridor).

* * * * *

4.7.2 Requirement for Continuous PM2.5 Monitoring. The State, or where appropriate, local agencies must operate continuous PM2.5 analyzers equal to at least one-half (round up) the minimum required sites listed in table D–5 to this appendix. At least one required continuous analyzer in each MSA must be collocated with one of the required FRM/FEM monitors, unless at least one of the required FRM/FEM monitors is itself a continuous FEM monitor in which case no collocation requirement applies. State and local air monitoring agencies must use methodologies and quality assurance/quality control (QA/QC) procedures approved by the EPA Regional Administrator for these required continuous analyzers.

Appendix E to Part 58—Probe and Monitoring Path Siting Criteria for Ambient Air Quality Monitoring

1. Introduction

2. Monitors and Samplers with Probe Inlets

3. Open Path Analyzers

4. Waiver Provisions

5. References

1. Introduction

1.1 Applicability

(a) This appendix contains specific location criteria applicable to ambient air quality monitoring probes, inlets, and optical paths of SLAMS, NCore, PAMS, and other monitor types whose data are intended to be used to determine compliance with the NAAQS. These specific location criteria are relevant after the general location has been selected based on the monitoring objectives and spatial scale of representation discussed in appendix D to this part. Monitor probe material and sample residence time requirements are also included in this appendix. Adherence to these siting criteria is necessary to ensure the uniform collection of compatible and comparable air quality data.

(b) The probe and monitoring path siting criteria discussed in this appendix must be followed to the maximum extent possible. It is recognized that there may be situations where some deviation from the siting criteria may be necessary. In any such case, the reasons must be thoroughly documented in a written request for a waiver that describes whether the resulting monitoring data will be representative of the monitoring area and how and why the proposed or existing siting must deviate from the criteria. This documentation should help to avoid later questions about the validity of the resulting monitoring data. Conditions under which the EPA would consider an application for waiver from these siting criteria are discussed in section 4 of this appendix.

(c) The pollutant-specific probe and monitoring path siting criteria generally apply to all spatial scales except where noted otherwise. Specific siting criteria that are phrased with “shall” or “must” are defined as requirements and exceptions must be granted through the waiver provisions. However, siting criteria that are phrased with “should” are defined as goals to meet for consistency but are not requirements.

2. Monitors and Samplers with Probe Inlets

2.1 Horizontal and Vertical Placement

(a) For O3 and SO2 monitoring, and for neighborhood or larger spatial scale Pb, PM10 , PM10–2.5 , PM2.5 , NO2 , and CO sites, the probe must be located greater than or equal to 2.0 meters and less than or equal to 15 meters above ground level.

(b) Middle scale CO and NO2 monitors must have sampler inlets greater than or equal to 2.0 meters and less than or equal to 15 meters above ground level.

(c) Middle scale PM10–2.5 sites are required to have sampler inlets greater than or equal to 2.0 meters and less than or equal to 7.0 meters above ground level.

(d) Microscale Pb, PM10 , PM10–2.5 , and PM2.5 sites are required to have sampler inlets greater than or equal to 2.0 meters and less than or equal to 7.0 meters above ground level.

(e) Microscale near-road NO2 monitoring sites are required to have sampler inlets greater than or equal to 2.0 meters and less than or equal to 7.0 meters above ground level.

(f) The probe inlets for microscale carbon monoxide monitors that are being used to measure concentrations near roadways must be greater than or equal to 2.0 meters and less than or equal to 7.0 meters above ground level. Those probe inlets for microscale carbon monoxide monitors measuring concentrations near roadways in downtown areas or urban street canyons must be greater than or equal to 2.5 meters and less than or equal to 3.5 meters above ground level. The probe must be at least 1.0 meter vertically or horizontally away from any supporting structure, walls, parapets, penthouses, etc., and away from dusty or dirty areas. If the probe is located near the side of a building or wall, then it should be located on the windward side of the building relative to the prevailing wind direction during the season of highest concentration potential for the pollutant being measured.

2.2 Spacing From Minor Sources

(a) It is important to understand the monitoring objective for a particular site in order to interpret this requirement. Local minor sources of a primary pollutant, such as SO2 , lead, or particles, can cause high concentrations of that particular pollutant at a monitoring site. If the objective for that monitoring site is to investigate these local primary pollutant emissions, then the site will likely be properly located nearby. This type of monitoring site would, in all likelihood, be a microscale-type of monitoring site. If a monitoring site is to be used to determine air quality over a much larger area, such as a neighborhood or city, a monitoring agency should avoid placing a monitor probe inlet near local, minor sources, because a plume from a local minor source should not be allowed to inappropriately impact the air quality data collected at a site. Particulate matter sites should not be located in an unpaved area unless there is vegetative ground cover year-round, so that the impact of windblown dusts will be kept to a minimum.

(b) Similarly, local sources of nitric oxide (NO) and ozone-reactive hydrocarbons can have a scavenging effect causing unrepresentatively low concentrations of O3 in the vicinity of probes for O3 . To minimize these potential interferences from nearby minor sources, the probe inlet should be placed at a distance from furnace or incineration flues or other minor sources of SO2 or NO. The separation distance should take into account the heights of the flues, type of waste or fuel burned, and the sulfur content of the fuel.

2.3 Spacing From Obstructions

(a) Obstacles may scavenge SO2 , O3 , or NO2 , and can act to restrict airflow for any pollutant. To avoid this interference, the probe inlet must have unrestricted airflow pursuant to paragraph (b) of this section and should be located at a distance from obstacles. The horizontal distance from the obstacle to the probe inlet must be at least twice the height that the obstacle protrudes above the probe inlet. An obstacle that does not meet the minimum distance requirement is considered an obstruction that restricts airflow to the probe inlet. The EPA does not generally consider objects or obstacles such as flag poles or site towers used for NOy convertors and meteorological sensors, etc. to be deemed obstructions.

(b) A probe inlet located near or along a vertical wall is undesirable because air moving along the wall may be subject to removal mechanisms. A probe inlet must have unrestricted airflow with no obstructions (as defined in paragraph (a) of this section) in a continuous arc of at least 270 degrees. An unobstructed continuous arc of 180 degrees is allowable when the applicable network design criteria specified in appendix D of this part require monitoring in street canyons and the probe is located on the side of a building. This arc must include the predominant wind direction for the season of greatest pollutant concentration potential. For particle sampling, there must be a minimum of 2.0 meters of horizontal separation from walls, parapets, and structures for rooftop site placement.

(c) A sampling station with a probe inlet located closer to an obstacle than required by the criteria in this section should be classified as middle scale or microscale, rather than neighborhood or urban scale, since the measurements from such a station would more closely represent these smaller scales.

(d) For near-road monitoring stations, the monitor probe shall have an unobstructed air flow, where no obstacles exist at or above the height of the monitor probe, between the monitor probe and the outside nearest edge of the traffic lanes of the target road segment.

2.4 Spacing From Trees

(a) Trees can provide surfaces for SO2 , O3 , or NO2 adsorption or reactions and surfaces for particle deposition. Trees can also act as obstructions in locations where the trees are between the air pollutant sources or source areas and the monitoring site and where the trees are of a sufficient height and leaf canopy density to interfere with the normal airflow around the probe inlet. To reduce this possible interference/obstruction, the probe inlet should be 20 meters or more from the drip line of trees and must be at least 10 meters from the drip line of trees. If a tree or group of trees is an obstacle, the probe inlet must meet the distance requirements of section 2.3 of this appendix.

(b) The scavenging effect of trees is greater for O3 than for other criteria pollutants. Monitoring agencies must take steps to consider the impact of trees on ozone monitoring sites and take steps to avoid this problem.

(c) Beginning January 1, 2024, microscale sites of any air pollutant shall have no trees or shrubs located at or above the line-of-sight fetch between the probe and the source under investigation,e.g., a roadway or a stationary source.

2.5 Spacing From Roadways

Table E–1 to Section 2.5 of Appendix E—Minimum Separation Distance Between Roadways and Probes for Monitoring Neighborhood and Urban Scale Ozone (O3) and Oxides of Nitrogen (NO, NO2 , NOX , NOy)
Roadway average daily traffic, vehicles per dayMinimum distance1 3 (meters)Minimum distance1 2 3 (meters)
1 Distance from the edge of the nearest traffic lane. The distance for intermediate traffic counts should be interpolated from the table values based on the actual traffic count./TNOTE>
2 Applicable for ozone monitors whose placement was not approved as of December 18, 2006.
3 All distances listed are expressed as having 2 significant figures. When rounding is performed to assess compliance with these siting requirements, the distance measurements will be rounded such as to retain at least two significant figures.
≤1,0001010
10,0001020
15,0002030
20,0003040
40,0005060
70,000100100
≥110,000250250

2.5.1 Spacing for Ozone Probes

In siting an O3 monitor, it is important to minimize destructive interferences from sources of NO, since NO readily reacts with O3 . Table E–1 of this appendix provides the required minimum separation distances between a roadway and a probe inlet for various ranges of daily roadway traffic. A sampling site with a monitor probe located closer to a roadway than allowed by the Table E–1 requirements should be classified as middle scale or microscale, rather than neighborhood or urban scale, since the measurements from such a site would more closely represent these smaller scales.

2.5.2 Spacing for Carbon Monoxide Probes

(a) Near-road microscale CO monitoring sites, including those located in downtown areas, urban street canyons, and other near-road locations such as those adjacent to highly trafficked roads, are intended to provide a measurement of the influence of the immediate source on the pollution exposure on the adjacent area.

(b) Microscale CO monitor probe inlets in downtown areas or urban street canyon locations shall be located a minimum distance of 2.0 meters and a maximum distance of 10 meters from the edge of the nearest traffic lane.

(c) Microscale CO monitor probe inlets in downtown areas or urban street canyon locations shall be located at least 10 meters from an intersection, preferably at a midblock location. Midblock locations are preferable to intersection locations because intersections represent a much smaller portion of downtown space than do the streets between them. Pedestrian exposure is probably also greater in street canyon/corridors than at intersections.

(d) Neighborhood scale CO monitor probe inlets in downtown areas or urban street canyon locations shall be located according to the requirements in Table E–2 of this appendix.

Table E–2 to Section 2.5.2 of Appendix E—Minimum Separation Distance Between Roadways and Probes for Monitoring Neighborhood Scale Carbon Monoxide
Roadway average daily traffic, vehicles per dayMinimum distance (meters)
Distance from the edge of the nearest traffic lane. The distance for intermediate traffic counts should be interpolated from the table values based on the actual traffic count.
All distances listed are expressed as having 2 significant figures. When rounding is performed to assess compliance with these siting requirements, the distance measurements will be rounded such as to retain at least two significant figures.
≤10,00010
15,00025
20,00045
30,00080
40,000115
50,000135
≥60,000150

2.5.3 Spacing for Particulate Matter (PM , PM , PM , Pb) Inlets

(a) Since emissions associated with the operation of motor vehicles contribute to urban area particulate matter ambient levels, spacing from roadway criteria are necessary for ensuring national consistency in PM sampler siting.

(b) The intent is to locate localized hot-spot sites in areas of highest concentrations, whether it be caused by mobile or multiple stationary sources. If the area is primarily affected by mobile sources and the maximum concentration area(s) is judged to be a traffic corridor or street canyon location, then the monitors should be located near roadways with the highest traffic volume and at separation distances most likely to produce the highest concentrations. For microscale traffic corridor sites, the location must be greater than or equal 5.0 meters and less than or equal to 15 meters from the major roadway. For the microscale street canyon site, the location must be greater than or equal 2.0 meters and less than or equal to 10 meters from the roadway. For the middle scale site, a range of acceptable distances from the roadway is shown in Figure E–1 of this appendix. This figure also includes separation distances between a roadway and neighborhood or larger scale sites by default. Any PM probe inlet at a site, 2.0 to 15 meters high, and further back than the middle scale requirements will generally be neighborhood, urban or regional scale. For example, according to Figure E–1 of this appendix, if a PM sampler is primarily influenced by roadway emissions and that sampler is set back 10 meters from a 30,000 ADT (average daily traffic) road, the site should be classified as microscale, if the sampler's inlet height is between 2.0 and 7.0 meters. If the sampler's inlet height is between 7.0 and 15 meters, the site should be classified as middle scale. If the sampler is 20 meters from the same road, it will be classified as middle scale; if 40 meters, neighborhood scale; and if 110 meters, an urban scale.


Minnesota marijuana law takes dual approach to testing (29)

2.5.4 Spacing for Nitrogen Dioxide (NO) Probes

(a) In siting near-road NO2 monitors as required in section 4.3.2 of appendix D of this part, the monitor probe shall be as near as practicable to the outside nearest edge of the traffic lanes of the target road segment but shall not be located at a distance greater than 50 meters, in the horizontal, from the outside nearest edge of the traffic lanes of the target road segment. Where possible, the near-road NO2 monitor probe should be within 20 meters of the target road segment.

(b) In siting NO2 monitors for neighborhood and larger scale monitoring, it is important to minimize near-road influences. Table E–1 of this appendix provides the required minimum separation distances between a roadway and a probe inlet for various ranges of daily roadway traffic. A site with a monitor probe located closer to a roadway than allowed by the Table E–1 requirements should be classified as microscale or middle scale rather than neighborhood or urban scale.

2.6 Probe Material and Pollutant Sampler Residence Time

(a) For the reactive gases (SO2 , NO2 , and O3), approved probe materials must be used for monitors. Studies25 34 have been conducted to determine the suitability of materials such as polypropylene, polyethylene, polyvinyl chloride, Tygon®, aluminum, brass, stainless steel, copper, borosilicate glass, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), perfluoroalkoxy (PFA), and fluorinated ethylene propylene (FEP) for use as intake sampling lines. Of the above materials, only borosilicate glass, PVDF, PTFE, PFA, and FEP have been found to be acceptable for use as intake sampling lines for all the reactive gaseous pollutants. Furthermore, the EPA25 has specified borosilicate glass, FEP Teflon®, or their equivalents as the only acceptable probe materials for delivering test atmospheres in the determination of reference or equivalent methods. Therefore, borosilicate glass, PVDF, PTFE, PFA, FEP, or their equivalents must be the only material in the sampling train (from probe inlet to the back of the monitor) that can be in contact with the ambient air sample for reactive gas monitors. NafionTM , which is composed primarily of PTFE, can be considered equivalent to PTFE; it has been shown in tests to exhibit virtually no loss of ozone at 20-second residence times.35

(b) For volatile organic compound (VOC) monitoring at PAMS, FEP Teflon® is unacceptable as the probe material because of VOC adsorption and desorption reactions on the FEP Teflon®. Borosilicate glass, stainless steel, or their equivalents are the acceptable probe materials for VOC and carbonyl sampling. Care must be taken to ensure that the sample residence time is kept to 20 seconds or less.

(c) No matter how nonreactive the sampling probe material is initially, after a period of use, reactive particulate matter is deposited on the probe walls. Therefore, the time it takes the gas to transfer from the probe inlet to the sampling device is critical. Ozone in the presence of nitrogen oxide (NO) will show significant losses, even in the most inert probe material, when the residence time exceeds 20 seconds.26 Other studies27 28 indicate that a 10-second or less residence time is easily achievable. Therefore, sampling probes for all reactive gas monitors for SO2 , NO2 , and O3 must have a sample residence time less than 20 seconds.

2.7 Summary

Table E–3 of this appendix presents a summary of the general requirements for probe siting criteria with respect to distances and heights. Table E–3 requires different elevation distances above the ground for the various pollutants. The discussion in this appendix for each of the pollutants describes reasons for elevating the monitor or probe inlet. The differences in the specified range of heights are based on the vertical concentration gradients. For source oriented and near-road monitors, the gradients in the vertical direction are very large for the microscale, so a small range of heights are used. The upper limit of 15 meters is specified for the consistency between pollutants and to allow the use of a single manifold for monitoring more than one pollutant.

Table E–3 to Section 2.7 of Appendix E—Summary of Probe Siting Criteria
PollutantScale9Height from ground to probe8 (meters)Horizontal or vertical distance from supporting structures18 to probe inlet (meters)Distance from drip line of trees to probe8 (meters)Distance from roadways to probe8 (meters)
N/A—Not applicable.
1 When a probe is located on a rooftop, this separation distance is in reference to walls, parapets, or penthouses located on the roof.
2 Should be greater than 20 meters from the dripline of tree(s) and must be 10 meters from the dripline.
3 Distance from sampler or probe inlet to obstacle, such as a building, must be at least twice the height the obstacle protrudes above the sampler or probe inlet. Sites not meeting this criterion may be classified as microscale or middle scale (see paragraphs 2.3(a) and 2.3(c)).
4 Must have unrestricted airflow in a continuous arc of at least 270 degrees around the probe or sampler; 180 degrees if the probe is on the side of a building or a wall for street canyon monitoring.
5 The probe or sampler should be away from minor sources, such as furnace or incineration flues. The separation distance is dependent on the height of the minor source emission point(s), the type of fuel or waste burned, and the quality of the fuel (sulfur, ash, or lead content). This criterion is designed to avoid undue influences from minor sources.
6 For microscale CO monitoring sites, the probe must be ≥10 meters from a street intersection and preferably at a midblock location.
7 Collocated monitor inlets must be within 4.0 meters of each other and at least 2.0 meters apart for flow rates greater than 200 liters/min or at least 1.0 meter apart for samplers having flow rates less than 200 liters/min to preclude airflow interference, unless a waiver has been granted by the Regional Administrator pursuant to paragraph 3.3.4.2(c) of appendix A of part 58. For PM2.5 , collocated monitor inlet heights should be within 1.0 meter of each other vertically.
8 All distances listed are expressed as having 2 significant figures. When rounding is performed to assess compliance with these siting requirements, the distance measurements will be rounded such as to retain at least two significant figures.
9 See section 1.2 of appendix D for definitions of monitoring scales.
SO22 3 4 5Middle, Neighborhood, Urban, and Regional2.0–15≥1.0≥10N/A.
COMicro [downtown or street canyon sites]2.5–3.52.0–10 for downtown areas or street canyon microscale.
Micro [Near-Road sites]2.0–7.0≥1.0≥10≤50 for near-road microscale.
Middle and Neighborhood2.0–15See Table E–2 of this appendix for middle and neighborhood scales.
O3Middle, Neighborhood, Urban, and Regional2.0–15≥1.0≥10See Table E–1.
Micro2.0–7.0≤50 for near-road micro-scale.
NO2Middle, Neighborhood, Urban, and Regional2.0–15≥1.0≥10See Table E–1.
PAMS Ozone precursorsNeighborhood and Urban2.0–15≥1.0≥10See Table E–1.
PM, PbMicro2.0–7.0
Middle, Neighborhood, Urban and Regional2.0–15≥2.0 (horizontal distance only)≥10See Figure E–1.

3. Open Path Analyzers

3.1 Horizontal and Vertical Placement

(a) For all O3 and SO2 monitoring sites and for neighborhood or larger spatial scale NO2 , and CO sites, at least 80 percent of the monitoring path must be located greater than or equal 2.0 meters and less than or equal to 15 meters above ground level.

(b) Middle scale CO and NO2 sites must have monitoring paths greater than or equal 2.0 meters and less than or equal to 15 meters above ground level.

(c) Microscale near-road monitoring sites are required to have monitoring paths greater than or equal 2.0 meters and less than or equal to 7.0 meters above ground level.

(d) For microscale carbon monoxide monitors that are being used to measure concentrations near roadways, the monitoring path must be greater than or equal 2.0 meters and less than or equal to 7.0 meters above ground level. If the microscale carbon monoxide monitors measuring concentrations near roadways are in downtown areas or urban street canyons, the monitoring path must be greater than or equal 2.5 meters and less than or equal to 3.5 meters above ground level and at least 90 percent of the monitoring path must be at least 1.0 meter vertically or horizontally away from any supporting structure, walls, parapets, penthouses, etc., and away from dusty or dirty areas. If a significant portion of the monitoring path is located near the side of a building or wall, then it should be located on the windward side of the building relative to the prevailing wind direction during the season of highest concentration potential for the pollutant being measured.

3.2 Spacing From Minor Sources

(a) It is important to understand the monitoring objective for a particular site in order to interpret this requirement. Local minor sources of a primary pollutant, such as SO2 can cause high concentrations of that particular pollutant at a monitoring site. If the objective for that monitoring site is to investigate these local primary pollutant emissions, then the site will likely be properly located nearby. This type of monitoring site would, in all likelihood, be a microscale type of monitoring site. If a monitoring site is to be used to determine air quality over a much larger area, such as a neighborhood or city, a monitoring agency should avoid placing a monitoring path near local, minor sources, because a plume from a local minor source should not be allowed to inappropriately impact the air quality data collected at a site.

(b) Similarly, local sources of nitric oxide (NO) and ozone-reactive hydrocarbons can have a scavenging effect causing unrepresentatively low concentrations of O3 in the vicinity of monitoring paths for O3 . To minimize these potential interferences from nearby minor sources, at least 90 percent of the monitoring path should be at a distance from furnace or incineration flues or other minor sources of SO2 or NO. The separation distance should take into account the heights of the flues, type of waste or fuel burned, and the sulfur content of the fuel.

3.3 Spacing From Obstructions

(a) Obstacles may scavenge SO2 , O3 , or NO2 , and can act to restrict airflow for any pollutant. To avoid this interference, at least 90 percent of the monitoring path must have unrestricted airflow and should be located at a distance from obstacles. The horizontal distance from the obstacle to the monitoring path must be at least twice the height that the obstacle protrudes above the monitoring path. An obstacle that does not meet the minimum distance requirement is considered an obstruction that restricts airflow to the monitoring path. The EPA does not generally consider objects or obstacles such as flag poles or site towers used for NOy convertors and meteorological sensors, etc. to be deemed obstructions.

(b) A monitoring path located near or along a vertical wall is undesirable because air moving along the wall may be subject to removal mechanisms. At least 90 percent of the monitoring path for open path analyzers must have unrestricted airflow with no obstructions (as defined in paragraph (a) of this section) in a continuous arc of at least 270 degrees. An unobstructed continuous arc of 180 degrees is allowable when the applicable network design criteria specified in appendix D of this part require monitoring in street canyons and the monitoring path is located on the side of a building. This arc must include the predominant wind direction for the season of greatest pollutant concentration potential.

(c) Special consideration must be given to the use of open path analyzers given their inherent potential sensitivity to certain types of interferences and optical obstructions. A monitoring path must be clear of all trees, brush, buildings, plumes, dust, or other optical obstructions, including potential obstructions that may move due to wind, human activity, growth of vegetation, etc. Temporary optical obstructions, such as rain, particles, fog, or snow, should be considered when siting an open path analyzer. Any of these temporary obstructions that are of sufficient density to obscure the light beam will negatively affect the ability of the open path analyzer to continuously measure pollutant concentrations. Transient, but significant obscuration of especially longer measurement paths, could occur as a result of certain meteorological conditions (e.g., heavy fog, rain, snow) and/or aerosol levels that are of a sufficient density to prevent the open path analyzer's light transmission. If certain compensating measures are not otherwise implemented at the onset of monitoring (e.g., shorter path lengths, higher light source intensity), data recovery during periods of greatest primary pollutant potential could be compromised. For instance, if heavy fog or high particulate levels are coincident with periods of projected NAAQS-threatening pollutant potential, the representativeness of the resulting data record in reflecting maximum pollution concentrations may be substantially impaired despite the fact that the site may otherwise exhibit an acceptable, even exceedingly high, overall valid data capture rate.

(d) A sampling station with a monitoring path located closer to an obstacle than required by the criteria in this section should be classified as middle scale or microscale, rather than neighborhood or urban scale, since the measurements from such a station would more closely represent these smaller scales.

(e) For near-road monitoring stations, the monitoring path shall have an unobstructed air flow, where no obstacles exist at or above the height of the monitoring path, between the monitoring path and the outside nearest edge of the traffic lanes of the target road segment.

3.4 Spacing From Trees

(a) Trees can provide surfaces for SO2 , O3 , or NO2 adsorption or reactions. Trees can also act as obstructions in locations where the trees are located between the air pollutant sources or source areas and the monitoring site, and where the trees are of a sufficient height and leaf canopy density to interfere with the normal airflow around the monitoring path. To reduce this possible interference/obstruction, at least 90 percent of the monitoring path should be 20 meters or more from the drip line of trees and must be at least 10 meters from the drip line of trees. If a tree or group of trees could be considered an obstacle, the monitoring path must meet the distance requirements of section 3.3 of this appendix.

(b) The scavenging effect of trees is greater for O3 than for other criteria pollutants. Monitoring agencies must take steps to consider the impact of trees on ozone monitoring sites and take steps to avoid this problem.

(c) Beginning January 1, 2024, microscale sites of any air pollutant shall have no trees or shrubs located at or above the line-of-sight fetch between the monitoring path and the source under investigation,e.g., a roadway or a stationary source.

3.5 Spacing from Roadways

Table E–4 of Section 3.5 of Appendix E—Minimum Separation Distance Between Roadways and Monitoring Paths for Monitoring Neighborhood and Urban Scale Ozone (O) and Oxides of Nitrogen (NO, NO , NO , NO)
Roadway average daily traffic, vehicles per dayMinimum distance1 3 (meters)Minimum distance1 2 3 (meters)
1 Distance from the edge of the nearest traffic lane. The distance for intermediate traffic counts should be interpolated from the table values based on the actual traffic count.
2 Applicable for ozone open path monitors whose placement was not approved as of December 18, 2006.
3 All distances listed are expressed as having 2 significant figures. When rounding is performed to assess compliance with these siting requirements, the distance measurements will be rounded such as to retain at least two significant figures.
≤1,0001010
10,0001020
15,0002030
20,0003040
40,0005060
70,000100100
≥110,000250250

3.5.1 Spacing for Ozone Monitoring Paths

In siting an O3 open path analyzer, it is important to minimize destructive interferences form sources of NO, since NO readily reacts with O3 . Table E–4 of this appendix provides the required minimum separation distances between a roadway and at least 90 percent of a monitoring path for various ranges of daily roadway traffic. A monitoring site with a monitoring path located closer to a roadway than allowed by the Table E–4 requirements should be classified as microscale or middle scale, rather than neighborhood or urban scale, since the measurements from such a site would more closely represent these smaller scales. The monitoring path(s) must not cross over a roadway with an average daily traffic count of 10,000 vehicles per day or more. For locations where a monitoring path crosses a roadway with fewer than 10,000 vehicles per day, monitoring agencies must consider the entire segment of the monitoring path in the area of potential atmospheric interference from automobile emissions. Therefore, this calculation must include the length of the monitoring path over the roadway plus any segments of the monitoring path that lie in the area between the roadway and minimum separation distance, as determined from Table E–4 of this appendix. The sum of these distances must not be greater than 10 percent of the total monitoring path length.

3.5.2 Spacing for Carbon Monoxide Monitoring Paths

(a) Near-road microscale CO monitoring sites, including those located in downtown areas, urban street canyons, and other near-road locations such as those adjacent to highly trafficked roads, are intended to provide a measurement of the influence of the immediate source on the pollution exposure on the adjacent area.

(b) Microscale CO monitoring paths in downtown areas or urban street canyon locations shall be located a minimum distance of 2.0 meters and a maximum distance of 10 meters from the edge of the nearest traffic lane.

(c) Microscale CO monitoring paths in downtown areas or urban street canyon locations shall be located at least 10 meters from an intersection, preferably at a midblock location. Midblock locations are preferable to intersection locations because intersections represent a much smaller portion of downtown space than do the streets between them. Pedestrian exposure is probably also greater in street canyon/corridors than at intersections.

(d) Neighborhood scale CO monitoring paths in downtown areas or urban street canyon locations shall be located according to the requirements in Table E–5 of this appendix.

Table E–5 Section 3.5.2 of Appendix E—Minimum Separation Distance Between Roadways and Monitoring Paths for Monitoring Neighborhood Scale Carbon Monoxide
Roadway average daily traffic, vehicles per dayMinimum distance1 2 (meters)
1 Distance from the edge of the nearest traffic lane. The distance for intermediate traffic counts should be interpolated from the table values based on the actual traffic count.
2 All distances listed are expressed as having 2 significant figures. When rounding is performed to assess compliance with these siting requirements, the distance measurements will be rounded such as to retain at least two significant figures.
≤10,00010
15,00025
20,00045
30,00080
40,000115
50,000135
≥60,000150

3.5.3 Spacing for Nitrogen Dioxide (NO2) Monitoring Paths

(a) In siting near-road NO2 monitors as required in section 4.3.2 of appendix D of this part, the monitoring path shall be as near as practicable to the outside nearest edge of the traffic lanes of the target road segment but shall not be located at a distance greater than 50 meters, in the horizontal, from the outside nearest edge of the traffic lanes of the target road segment.

(b) In siting NO2 open path monitors for neighborhood and larger scale monitoring, it is important to minimize near-road influences. Table E–5 of this appendix provides the required minimum separation distances between a roadway and at least 90 percent of a monitoring path for various ranges of daily roadway traffic. A site with a monitoring path located closer to a roadway than allowed by the Table E–4 requirements should be classified as microscale or middle scale rather than neighborhood or urban scale. The monitoring path(s) must not cross over a roadway with an average daily traffic count of 10,000 vehicles per day or more. For locations where a monitoring path crosses a roadway with fewer than 10,000 vehicles per day, monitoring agencies must consider the entire segment of the monitoring path in the area of potential atmospheric interference form automobile emissions. Therefore, this calculation must include the length of the monitoring path over the roadway plus any segments of the monitoring path that lie in the area between the roadway and minimum separation distance, as determined from Table E–5 of this appendix. The sum of these distances must not be greater than 10 percent of the total monitoring path length.

3.6 Cumulative Interferences on a Monitoring Path

The cumulative length or portion of a monitoring path that is affected by minor sources, trees, or roadways must not exceed 10 percent of the total monitoring path length.

3.7 Maximum Monitoring Path Length

The monitoring path length must not exceed 1.0 kilometer for open path analyzers in neighborhood, urban, or regional scale. For middle scale monitoring sites, the monitoring path length must not exceed 300 meters. In areas subject to frequent periods of dust, fog, rain, or snow, consideration should be given to a shortened monitoring path length to minimize loss of monitoring data due to these temporary optical obstructions. For certain ambient air monitoring scenarios using open path analyzers, shorter path lengths may be needed in order to ensure that the monitoring site meets the objectives and spatial scales defined in appendix D to this part. The Regional Administrator may require shorter path lengths, as needed on an individual basis, to ensure that the SLAMS sites meet the appendix D requirements. Likewise, the Administrator may specify the maximum path length used at NCore monitoring sites.

3.8 Summary

Table E–6 of this appendix presents a summary of the general requirements for monitoring path siting criteria with respect to distances and heights. Table E–6 requires different elevation distances above the ground for the various pollutants. The discussion in this appendix for each of the pollutants describes reasons for elevating the monitoring path. The differences in the specified range of heights are based on the vertical concentration gradients. For source oriented and near-road monitors, the gradients in the vertical direction are very large for the microscale, so a small range of heights are used. The upper limit of 15 meters is specified for the consistency between pollutants and to allow the use of a monitoring path for monitoring more than one pollutant.

Table E–6 Section 3.8 of Appendix E—Summary of Monitoring Path Siting Criteria
PollutantMaximum monitoring path lengthHeight from ground to 80% of monitoring path (meters)Horizontal or vertical distance from supporting structures to 90% of monitoring path (meters)Distance from trees to 90% of monitoring path (meters)Distance from roadways to monitoring path (meters)
N/A—Not applicable.
1 Monitoring path for open path analyzers is applicable only to middle or neighborhood scale CO monitoring, middle, neighborhood, urban, and regional scale NO2 monitoring, and all applicable scales for monitoring SO2 , O3 , and O3 precursors.
2 When the monitoring path is located on a rooftop, this separation distance is in reference to walls, parapets, or penthouses located on roof.
3 At least 90 percent of the monitoring path should be greater than 20 meters from the dripline of tree(s) and must be 10-meters from the dripline.
4 Distance from 90 percent of monitoring path to obstacle, such as a building, must be at least twice the height the obstacle protrudes above the monitoring path. Sites not meeting this criterion may be classified as microscale or middle scale (see text).
5 Must have unrestricted airflow 270 degrees around at least 90 percent of the monitoring path; 180 degrees if the monitoring path is adjacent to the side of a building or a wall for street canyon monitoring.
6 The monitoring path should be away from minor sources, such as furnace or incineration flues. The separation distance is dependent on the height of the minor source's emission point (such as a flue), the type of fuel or waste burned, and the quality of the fuel (sulfur, ash, or lead content). This criterion is designed to avoid undue influences from minor sources.
7 For microscale CO monitoring sites, the monitoring path must be ≥10. meters from a street intersection and preferably at a midblock location.
8 All distances listed are expressed as having 2 significant figures. When rounding is performed to assess compliance with these siting requirements, the distance measurements will be rounded such as to retain at least two significant figures.
9 See section 1.2 of appendix D for definitions of monitoring scales.
10 See section 3.7 of this appendix.
SO23456<= 300 m for Middle <= 1.0 km for Neighborhood, Urban, and Regional2.0–15≥1.0≥10N/A.
CO457<= 300 m for Micro [downtown or street canyon sites]2.5–3.5≥1.0≥102.0–10 for downtown areas or street canyon microscale.
<= 300 m for Micro [Near-Road sites]2.0–7.0≤50 for near-road microscale.
<= 300 m for Middle2.0–15See Table E–5 of this appendix for middle and neighborhood scales.
<= 1.0 km for Neighborhood
O3345<= 300 m for Middle
<= 1.0 km for Neighborhood, Urban, and Regional2.0–15≥1.0≥10See Table E–4.
NO2345Between 50 m–300 m for Micro (Near-Road)2.0–7.0≤50 for near-road micro-scale.
<= 300 m for Middle≥1.0≥10
<= 1.0 km for Neighborhood, Urban, and Regional2.0–15See Table E–4.
PAMS Ozone precursors345<= 1.0 km for Neighborhood and Urban2.0–15≥1.0≥10See Table E–4.

4. Waiver Provisions

Most sampling probes or monitors can be located so that they meet the requirements of this appendix. New sites, with rare exceptions, can be located within the limits of this appendix. However, some existing sites may not meet these requirements and may still produce useful data for some purposes. The EPA will consider a written request from the State, or where applicable local, agency to waive one or more siting criteria for some monitoring sites providing that the State or their designee can adequately demonstrate the need (purpose) for monitoring or establishing a monitoring site at that location.

4.1 For a proposed new site, a waiver may be granted only if both the following criteria are met:

4.1.1 The proposed new site can be demonstrated to be as representative of the monitoring area as it would be if the siting criteria were being met.

4.1.2 The monitor or probe cannot reasonably be located so as to meet the siting criteria because of physical constraints (e.g., inability to locate the required type of site the necessary distance from roadways or obstructions).

4.2 For an existing site, a waiver may be granted if either the criterion in section 4.1.1 or the criterion in 4.1.2 of this appendix is met.

4.3 Cost benefits, historical trends, and other factors may be used to add support to the criteria in sections 4.1.1 and 4.1.2 of this appendix; however, by themselves, they will not be acceptable reasons for the EPA to grant a waiver. Written requests for waivers must be submitted to the Regional Administrator. Granted waivers must be renewed minimally every 5 years and ideally as part of the network assessment as defined in §58.10(d). The approval date of the waiver must be documented in the annual monitoring network plan to support the requirements of §58.10(a)(1) and 58.10(b)(10).

5. References

1. Bryan, R.J., R.J. Gordon, and H. Menck. Comparison of High Volume Air Filter Samples at Varying Distances from Los Angeles Freeway. University of Southern California, School of Medicine, Los Angeles, CA. (Presented at 66th Annual Meeting of Air Pollution Control Association. Chicago, IL. June 24–28, 1973. APCA 73–158.)

2. Teer, E.H. Atmospheric Lead Concentration Above an Urban Street. Master of Science Thesis, Washington University, St. Louis, MO. January 1971.

3. Bradway, R.M., F.A. Record, and W.E. Belanger. Monitoring and Modeling of Resuspended Roadway Dust Near Urban Arterials. GCA Technology Division, Bedford, MA. (Presented at 1978 Annual Meeting of Transportation Research Board, Washington, DC. January 1978.)

4. Pace, T.G., W.P. Freas, and E.M. Afify. Quantification of Relationship Between Monitor Height and Measured Particulate Levels in Seven U.S. Urban Areas. U.S. Environmental Protection Agency, Research Triangle Park, NC. (Presented at 70th Annual Meeting of Air Pollution Control Association, Toronto, Canada. June 20–24, 1977. APCA 77–13.4.)

5. Harrison, P.R. Considerations for Siting Air Quality Monitors in Urban Areas. City of Chicago, Department of Environmental Control, Chicago, IL. (Presented at 66th Annual Meeting of Air Pollution Control Association, Chicago, IL. June 24–28, 1973. APCA 73–161.)

6. Study of Suspended Particulate Measurements at Varying Heights Above Ground. Texas State Department of Health, Air Control Section, Austin, TX. 1970. p.7.

7. Rodes, C.E. and G.F. Evans. Summary of LACS Integrated Pollutant Data. In: Los Angeles Catalyst Study Symposium. U.S. Environmental Protection Agency, Research Triangle Park, NC. EPA Publication No. EPA–600/4–77–034. June 1977.

8. Lynn, D.A.et al. National Assessment of the Urban Particulate Problem: Volume 1, National Assessment. GCA Technology Division, Bedford, MA. U.S. Environmental Protection Agency, Research Triangle Park, NC. EPA Publication No. EPA–450/3–75–024. June 1976.

9. Pace, T.G. Impact of Vehicle-Related Particulates on TSP Concentrations and Rationale for Siting Hi-Vols in the Vicinity of Roadways. OAQPS, U.S. Environmental Protection Agency, Research Triangle Park, NC. April 1978.

10. Ludwig, F.L., J.H. Kealoha, and E. Shelar. Selecting Sites for Monitoring Total Suspended Particulates. Stanford Research Institute, Menlo Park, CA. Prepared for U.S. Environmental Protection Agency, Research Triangle Park, NC. EPA Publication No. EPA–450/3–77–018. June 1977, revised December 1977.

11. Ball, R.J. and G.E. Anderson. Optimum Site Exposure Criteria for SO2 Monitoring. The Center for the Environment and Man, Inc., Hartford, CT. Prepared for U.S. Environmental Protection Agency, Research Triangle Park, NC. EPA Publication No. EPA–450/3–77–013. April 1977.

12. Ludwig, F.L. and J.H.S. Kealoha. Selecting Sites for Carbon Monoxide Monitoring. Stanford Research Institute, Menlo Park, CA. Prepared for U.S. Environmental Protection Agency, Research Triangle Park, NC. EPA Publication No. EPA–450/3–75–077. September 1975.

13. Ludwig, F.L. and E. Shelar. Site Selection for the Monitoring of Photochemical Air Pollutants. Stanford Research Institute, Menlo Park, CA. Prepared for U.S. Environmental Protection Agency, Research Triangle Park, NC. EPA Publication No. EPA–450/3–78–013. April 1978.

14. Lead Analysis for Kansas City and Cincinnati, PEDCo Environmental, Inc., Cincinnati, OH. Prepared for U.S. Environmental Protection Agency, Research Triangle Park, NC. EPA Contract No. 66–02–2515, June 1977.

15. Barltrap, D. and C.D. Strelow. Westway Nursery Testing Project. Report to the Greater London Council. August 1976.

16. Daines, R. H., H. Moto, and D. M. Chilko. Atmospheric Lead: Its Relationship to Traffic Volume and Proximity to Highways. Environ. Sci. and Technol., 4:318, 1970.

17. Johnson, D. E.,et al. Epidemiologic Study of the Effects of Automobile Traffic on Blood Lead Levels, Southwest Research Institute, Houston, TX. Prepared for U.S. Environmental Protection Agency, Research Triangle Park, NC. EPA–600/1–78–055, August 1978.

18. Air Quality Criteria for Lead. Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC EPA–600/8–83–028 aF–dF, 1986, and supplements EPA–600/8–89/049F, August 1990. (NTIS document numbers PB87–142378 and PB91–138420.)

19. Lyman, D. R. The Atmospheric Diffusion of Carbon Monoxide and Lead from an Expressway, Ph.D. Dissertation, University of Cincinnati, Cincinnati, OH. 1972.

20. Wechter, S.G. Preparation of Stable Pollutant Gas Standards Using Treated Aluminum Cylinders. ASTM STP. 598:40–54, 1976.

21. Wohlers, H.C., H. Newstein and D. Daunis. Carbon Monoxide and Sulfur Dioxide Adsorption On and Description From Glass, Plastic and Metal Tubings. J. Air Poll. Con. Assoc. 17:753, 1976.

22. Elfers, L.A. Field Operating Guide for Automated Air Monitoring Equipment. U.S. NTIS. p. 202, 249, 1971.

23. Hughes, E.E. Development of Standard Reference Material for Air Quality Measurement. ISA Transactions, 14:281–291, 1975.

24. Altshuller, A.D. and A.G. Wartburg. The Interaction of Ozone with Plastic and Metallic Materials in a Dynamic Flow System. Intern. Jour. Air and Water Poll., 4:70–78, 1961.

25. Code of Federal Regulations. 40 CFR 53.22, July 1976.

26. Butcher, S.S. and R.E. Ruff. Effect of Inlet Residence Time on Analysis of Atmospheric Nitrogen Oxides and Ozone, Anal. Chem., 43:1890, 1971.

27. Slowik, A.A. and E.B. Sansone. Diffusion Losses of Sulfur Dioxide in Sampling Manifolds. J. Air. Poll. Con. Assoc., 24:245, 1974.

28. Yamada, V.M. and R.J. Charlson. Proper Sizing of the Sampling Inlet Line for a Continuous Air Monitoring Station. Environ. Sci. and Technol., 3:483, 1969.

29. Koch, R.C. and H.E. Rector. Optimum Network Design and Site Exposure Criteria for Particulate Matter, GEOMET Technologies, Inc., Rockville, MD. Prepared for U.S. Environmental Protection Agency, Research Triangle Park, NC. EPA Contract No. 68–02–3584. EPA 450/4–87–009. May 1987.

30. Burton, R.M. and J.C. Suggs. Philadelphia Roadway Study. Environmental Monitoring Systems Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, N.C. EPA–600/4–84–070 September 1984.

31. Technical Assistance Document for Sampling and Analysis of Ozone Precursors. Atmospheric Research and Exposure Assessment Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711. EPA 600/8–91–215. October 1991.

32. Quality Assurance Handbook for Air Pollution Measurement Systems: Volume IV. Meteorological Measurements. Atmospheric Research and Exposure Assessment Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711. EPA 600/4–90–0003. August 1989.

33. On-Site Meteorological Program Guidance for Regulatory Modeling Applications. Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711. EPA 450/4–87–013. June 1987F.

34. Johnson, C., A. Whitehill, R. Long, and R. Vanderpool. Investigation of Gaseous Criteria Pollutant Transport Efficiency as a Function of Tubing Material. U.S. Environmental Protection Agency, Research Triangle Park, NC 27711. EPA/600/R–22/212. August 2022.

35. Hannah Halliday, Cortina Johnson, Tad Kleindienst, Russell Long, Robert Vanderpool, and Andrew Whitehill. Recommendations for Nationwide Approval of NafionTM Dryers Upstream of UV-Absorption Ozone Analyzers. U.S. Environmental Protection Agency, Research Triangle Park, NC 27711. EPA/600/R–20/390. November 2020.

Appendix G to Part 58—Uniform Air Quality Index (AQI) and Daily Reporting

1. General Information

2. Reporting Requirements

3. Data Handling

1. General Information

1.1AQI Overview. The AQI is a tool that simplifies reporting air quality to the public in a nationally uniform and easy to understand manner. The AQI converts concentrations of pollutants, for which the EPA has established a national ambient air quality standard (NAAQS), into a uniform scale from 0–500. These pollutants are ozone (O3), particulate matter (PM2.5 , PM10), carbon monoxide (CO), sulfur dioxide (SO2), and nitrogen dioxide (NO2). The scale of the index is divided into general categories that are associated with health messages.

2. Reporting Requirements

2.1Applicability. The AQI must be reported daily for a metropolitan statistical area (MSA) with a population over 350,000. When it is useful and possible, it is recommended, but not required for an area to report a sub-daily AQI as well.

2.2Contents of AQI Report.

2.2.1Content of AQI Report Requirements. An AQI report must contain the following:

a. The reporting area(s) (the MSA or subdivision of the MSA).

b. The reporting period (the day for which the AQI is reported).

c. The main pollutant (the pollutant with the highest index value).

d. The AQI (the highest index value).

e. The category descriptor and index value associated with the AQI and, if choosing to report in a color format, the associated color. Use only the following descriptors and colors for the six AQI categories:

Table 1 to Section 2 of Appendix G—AQI Categories
For this AQIUse this descriptorAnd this color1
1 Specific color definitions can be found in the most recent reporting guidance (Technical Assistance Document for the Reporting of Daily Air Quality), which can be found athttps://www.airnow.gov/publications/air-quality-index/technical-assistance-document-for-reporting-the-daily-aqi/.
0 to 50“Good”Green.
51 to 100“Moderate”Yellow.
101 to 150“Unhealthy for Sensitive Groups”Orange.
151 to 200“Unhealthy”Red.
201 to 300“Very Unhealthy”Purple.
301 and above“Hazardous”Maroon1 .

f. The pollutant specific sensitive groups for any reported index value greater than 100. The sensitive groups for each pollutant are identified as part of the periodic review of the air quality criteria and the NAAQS. For convenience, the EPA lists the relevant groups for each pollutant in the most recent reporting guidance (Technical Assistance Document for the Reporting of Daily Air Quality), which can be found athttps://www.airnow.gov/publications/air-quality-index/technical-assistance-document-for-reporting-the-daily-aqi/.

2.2.2Contents of AQI Report When Applicable. When appropriate, the AQI report may also contain the following, but such information is not required:

a. Appropriate health and cautionary statements.

b. The name and index value for other pollutants, particularly those with an index value greater than 100.

c. The index values for sub-areas of your MSA.

d. Causes for unusually high AQI values.

e. Pollutant concentrations.

f. Generally, the AQI report applies to an area's MSA only. However, if a significant air quality problem exists (AQI greater than 100) in areas significantly impacted by the MSA but not in it (for example, O3 concentrations are often highest downwind and outside an urban area), the report should identify these areas and report the AQI for these areas as well.

2.3.Communication, Timing, and Frequency of AQI Report. The daily AQI must be reported 7 days per week and made available via website or other means of public access. The daily AQI report represents the air quality for the previous day. Exceptions to this requirement are in section 2.4 of this appendix.

a. Reporting the AQI sub-daily is recommended, but not required, to provide more timely air quality information to the public for making health-protective decisions.

b. Submitting hourly data in real-time to the EPA's AirNow (or future analogous) system is recommended, but not required, and assists the EPA in providing timely air quality information to the public for making health-protective decisions.

c. Submitting hourly data for appropriate monitors (referenced in section 3.2 of this appendix) satisfies the daily AQI reporting requirement because the AirNow system makes daily and sub-daily AQI reports widely available through its website and other communication tools.

d. Forecasting the daily AQI provides timely air quality information to the public and is recommended but not required. Sub-daily forecasts are also recommended, especially when air quality is expected to vary substantially throughout the day, like during wildfires. Long-term (multi-day) forecasts can also be made available when useful.

2.4.Exceptions to Reporting Requirements.

a. If the index value for a particular pollutant remains below 50 for a season or year, then it may be excluded from the calculation of the AQI in section 3 of this appendix.

b. If all index values remain below 50 for a year, then the AQI may be reported at the discretion of the reporting agency. In subsequent years, if pollutant levels rise to where the AQI would be above 50, then the AQI must be reported as required in section 2 of this appendix.

c. As previously mentioned in section 2.3 of this appendix, submitting hourly data in real-time from appropriate monitors (referenced in section 3.2 of this appendix) to the EPA's AirNow (or future analogous) system satisfies the daily AQI reporting requirement.

3. Data Handling.

3.1Relationship of AQI and pollutant concentrations. For each pollutant, the AQI transforms ambient concentrations to a scale from 0 to 500. As appropriate, the AQI is associated with the NAAQS for each pollutant. In most cases, the index value of 100 is associated with the numerical level of the short-term standard (i.e., averaging time of 24-hours or less) for each pollutant. The index value of 50 is associated with the numerical level of the annual standard for a pollutant, if there is one, at one-half the level of the short-term standard for the pollutant or at the level at which it is appropriate to begin to provide guidance on cautionary language. Higher categories of the index are based on the potential for increasingly serious health effects to occur following exposure and increasing proportions of the population that are likely to be affected. The reported AQI corresponds to the pollutant with the highest calculated AQI. For the purposes of reporting the AQI, the sub-indexes for PM10 and PM2.5 are to be considered separately. The pollutant responsible for the highest index value (the reported AQI) is called the “main” pollutant for that day.

3.2Monitors Used for AQI Reporting. Concentration data from State/Local Air Monitoring Station (SLAMS) or parts of the SLAMS required by 40 CFR 58.10 must be used for each pollutant except PM. For PM, calculate and report the AQI on days for which air quality data has been measured (e.g., from continuous PM2.5 monitors required in appendix D to this part). PM measurements may be used from monitors that are not reference or equivalent methods (for example, continuous PM10 or PM2.5 monitors). Detailed guidance for relating non-approved measurements to approved methods by statistical linear regression is referenced here:

Reference for relating non-approved PM measurements to approved methods (Eberly, S., T. Fitz-Simons, T. Hanley, L. Weinstock., T. Tamanini, G. Denniston, B. Lambeth, E. Michel, S. Bortnick. Data Quality Objectives (DQOs) For Relating Federal Reference Method (FRM) and Continuous PM2.5 Measurements to Report an Air Quality Index (AQI). U.S. Environmental Protection Agency, Research Triangle Park, NC. EPA–454/B–02–002, November 2002).

3.3AQI Forecast. The AQI can be forecasted at least 24-hours in advance using the most accurate and reasonable procedures considering meteorology, topography, availability of data, and forecasting expertise. The guidance document, “Guidelines for Developing an Air Quality (Ozone and PM2.5) Forecasting Program,” can be found athttps://www.airnow.gov/publications/weathercasters/guidelines-developing-air-quality-forecasting-program/.

3.4Calculation and Equations.

a. The AQI is the highest value calculated for each pollutant as follows:

i. Identify the highest concentration among all of the monitors within each reporting area and truncate as follows:

(A) Ozone—truncate to 3 decimal places

PM2.5 —truncate to 1 decimal place

PM10 —truncate to integer

CO—truncate to 1 decimal place

SO2 —truncate to integer

NO2 —truncate to integer

(B) [Reserved]

ii. Using table 2 to this appendix, find the two breakpoints that contain the concentration.

iii. Using equation 1 to this appendix, calculate the index.

iv. Round the index to the nearest integer.

Table 2 to Section 3.4 of Appendix G—Breakpoints for the AQI
These breakpointsEqual these AQI's
O3 (ppm) 8-hourO3 (ppm) 1-hour1PM2.5 (µg/m3) 24-hourPM10 (µg/m3) 24-hourCO (ppm) 8-hourSO2 (ppb) 1-hourNO2 (ppb) 1-hourAQICategory
1 Areas are generally required to report the AQI based on 8-hour ozone values. However, there are a small number of areas where an AQI based on 1-hour ozone values would be more precautionary. In these cases, in addition to calculating the 8-hour ozone index value, the 1-hour ozone index value may be calculated, and the maximum of the two values reported.
2 8-hour O3 concentrations do not define higher AQI values (>301). AQI values > 301 are calculated with 1-hour O3 concentrations.
3 1-hr SO2 concentrations do not define higher AQI values (≥200). AQI values of 200 or greater are calculated with 24-hour SO2 concentration.
4 AQI values between breakpoints are calculated using equation 1 to this appendix. For AQI values in the hazardous category, AQI values greater than 500 should be calculated using equation 1 and the concentration specified for the AQI value of 500. The AQI value of 500 are as follows: O3 1-hour—0.604 ppm; PM2.5 24-hour—325.4 µg/m3 ; PM10 24-hour—604 µg/m3 ; CO ppm—50.4 ppm; SO2 1-hour—1004 ppb; and NO2 1-hour—2049 ppb.
0.000–0.0540.0–9.00–540.0–4.40–350–530–50Good.
0.055–0.0709.1–35.455–1544.5–9.436–7554–10051–100Moderate.
0.071–0.0850.125–0.16435.5–55.4155–2549.5–12.476–185101–360101–150Unhealthy for Sensitive Groups.
0.086–0.1050.165–0.20455.5–125.4255–35412.5–15.43 186–304361–649151–200Unhealthy.
0.106–0.2000.205–0.404125.5—225.4355–42415.5–30.43 305–604650–1249201–300Very Unhealthy.
0.201−(2)0.405+225.5+425+30.5+3 605+1250+301+4 Hazardous.

b. If the concentration is equal to a breakpoint, then the index is equal to the corresponding index value in table 2 to this appendix. However, equation 1 to this appendix can still be used. The results will be equal. If the concentration is between two breakpoints, then calculate the index of that pollutant with equation 1. It should also be noted that in some areas, the AQI based on 1-hour O3 will be more precautionary than using 8-hour values (see footnote 1 to table 2). In these cases, the 1-hour values as well as 8-hour values may be used to calculate index values and then use the maximum index value as the AQI for O3.


Minnesota marijuana law takes dual approach to testing (30)

Where:

Ip = the index value for pollutantp .

Cp = the truncated concentration of pollutantp .

BPHi = the breakpoint that is greater than or equal to Cp .

BPLo = the breakpoint that is less than or equal to Cp .

IHi = the AQI value corresponding to BPHi .

Ilo = the AQI value corresponding to BPLo .

c. If the concentration is larger than the highest breakpoint in table 2 to this appendix then the last two breakpoints in table 2 may be used when equation 1 to this appendix is applied.

Example:

d. Using table 2 and equation 1 to this appendix, calculate the index value for each of the pollutants measured and select the one that produces the highest index value for the AQI. For example, if a PM10 value of 210 µg/m3 is observed, a 1-hour O3 value of 0.156 ppm, and an 8-hour O3 value of 0.130 ppm, then do this:

i. Find the breakpoints for PM10 at 210 µg/m3 as 155 µg/m3 and 254 µg/m3 , corresponding to index values 101 and 150;

ii. Find the breakpoints for 1-hour O3 at 0.156 ppm as 0.125 ppm and 0.164 ppm, corresponding to index values 101 and 150;

iii. Find the breakpoints for 8-hour O3 at 0.130 ppm as 0.116 ppm and 0.374 ppm, corresponding to index values 201 and 300;

iv. Apply equation 21 to this appendix for 210 µg/m3 , PM10 :


Minnesota marijuana law takes dual approach to testing (31)

v. Apply equation 3 to this appendix for 0.156 ppm, 1-hour O3 :


Minnesota marijuana law takes dual approach to testing (32)

vi. Apply equation 4 to this appendix for 0.130 ppm, 8-hour O3 :


Minnesota marijuana law takes dual approach to testing (33)

vii. Find the maximum, 206. This is the AQI. A minimal AQI report could read: “Today, the AQI for my city is 206, which is Very Unhealthy, due to ozone.” It would then reference the associated sensitive groups.

Minnesota marijuana law takes dual approach to testing (2024)
Top Articles
Latest Posts
Article information

Author: Pres. Lawanda Wiegand

Last Updated:

Views: 5762

Rating: 4 / 5 (51 voted)

Reviews: 82% of readers found this page helpful

Author information

Name: Pres. Lawanda Wiegand

Birthday: 1993-01-10

Address: Suite 391 6963 Ullrich Shore, Bellefort, WI 01350-7893

Phone: +6806610432415

Job: Dynamic Manufacturing Assistant

Hobby: amateur radio, Taekwondo, Wood carving, Parkour, Skateboarding, Running, Rafting

Introduction: My name is Pres. Lawanda Wiegand, I am a inquisitive, helpful, glamorous, cheerful, open, clever, innocent person who loves writing and wants to share my knowledge and understanding with you.